• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, doi:10.1029/1999RG000073.

  • Bloom, S., , L. Takacs, , A. DaSilva, , and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., , R. Lucchesi, , and M. Suarez, 2015a: MERRA-2: File specification. NASA GMAO Office Note 9, 73 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf.]

  • Bosilovich, M. G., and Coauthors, 2015b: MERRA-2: Initial evaluation of the climate. NASA Tech. Rep. NASA/TM-2015-104606, 136 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/tm/docs/Bosilovich803.pdf.]

  • Chipperfield, M. P., , L. J. Gray, , J. S. Kinnersley, , and J. Zawodny, 1994: A two-dimensional model study of the QBO signal in SAGE II NO2 and O3. Geophys. Res. Lett., 21, 589592, doi:10.1029/94GL00211.

    • Search Google Scholar
    • Export Citation
  • Choi, W., , H. Lee, , W. B. Grant, , J. H. Park, , J. R. Holton, , K.-M. Lee, , and B. Naujokat, 2002: On the secondary meridional circulation associated with the quasi-biennial oscillation. Tellus, 54B, 395406, doi:10.1034/j.1600-0889.2002.201286.x.

    • Search Google Scholar
    • Export Citation
  • Fleming, E. L., , C. H. Jackman, , J. E. Rosenfield, , and D. B. Considine, 2002: Two-dimensional model simulations of the QBO in ozone and tracers in the tropical stratosphere. J. Geophys. Res., 107, 4665, doi:10.1029/2001JD001146.

    • Search Google Scholar
    • Export Citation
  • Frith, S. M., , A. Kramarova, , R. S. Stolarski, , R. D. McPeters, , P. K. Bhartia, , and G. J. Labow, 2014: Recent changes in total column ozone based on the SBUV version 8.6 merged ozone data set. J. Geophys. Res. Atmos., 119, 97359751, doi:10.1002/2014JD021889.

    • Search Google Scholar
    • Export Citation
  • Froidevaux, L., and Coauthors, 2006: Early validation analyses of atmospheric profiles from EOS MLS on the Aura satellite. IEEE Trans. Geosci. Remote Sens., 44, 11061121, doi:10.1109/TGRS.2006.864366.

    • Search Google Scholar
    • Export Citation
  • Global Modeling and Assimilation Office, 2015a: inst3_3d asm Nv: MERRA-2 3D assimilated meteorological fields 3-hourly (model level, 0.625 × 0.5L42), version 5.12.4. GSFC Distributed Active Archive Center, accessed 1 May 2015, doi:10.5067/WWQSXQ8IVFW8.

  • Global Modeling and Assimilation Office, 2015b: instM 3d asm Np: MERRA-2 3D IAU State, meteorology monthly averaged 3-hourly (p-coord, 0.625 × 0.5L42), version 5.12.4. GSFC Distributed Active Archive Center, accessed 1 May 2015, doi:10.5067/2E096JV59PK7.

  • Global Modeling and Assimilation Office, 2015c: instM 3d odt Np: MERRA-2 3D ozone tendencies monthly averaged 3-hourly (p-coord, 0.625 × 0.5L42), version 5.12.4. GSFC Distributed Active Archive Center, accessed 1 May 2015, doi:10.5067/Z2KCWAV4GPD2.

  • Global Modeling and Assimilation Office, 2015d: instM 3d udt Np: MERRA-2 3D averaged 3-hourly (p-coord, 0.625 × 0.5L42), version 5.12.4. GSFC Distributed Active Archive Center, accessed 1 May 2015, doi:10.5067/2YOIQB5C3ACN.

  • Hasebe, F., 1994: Quasi-biennial oscillations of ozone and diabatic circulation in the equatorial stratosphere. J. Atmos. Sci., 51, 729745, doi:10.1175/1520-0469(1994)051<0729:QBOOOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., , M. McKay, , and C. R. Trepte, 1994: A climatology of stratospheric aerosol. J. Geophys. Res., 99, 20 68920 700, doi:10.1029/94JD01525.

    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., , L. D. Oman, , P. A. Newman, , and I.-S. Song, 2013: Net influence of an internally generated quasi-biennial oscillation on modelled stratospheric climate and chemistry. Atmos. Chem. Phys., 13, 12 18712 197, doi:10.5194/acp-13-12187-2013.

    • Search Google Scholar
    • Export Citation
  • Kramarova, N. A., , P. K. Bhartia, , S. M. Frith, , R. D. McPeters, , and R. S. Stolarski, 2013: Interpreting SBUV smoothing errors: An example using the quasi-biennial oscillation. Atmos. Meas. Tech., 6, 20892099, doi:10.5194/amt-6-2089-2013.

    • Search Google Scholar
    • Export Citation
  • Logan, J. A., and Coauthors, 2003: Quasibiennial oscillation in tropical ozone as revealed by ozonesonde and satellite data. J. Geophys. Res., 108, 4244, doi:10.1029/2002JD002170.

    • Search Google Scholar
    • Export Citation
  • Molod, A., , L. Takacs, , M. Suarez, , and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, doi:10.5194/gmd-8-1339-2015.

    • Search Google Scholar
    • Export Citation
  • Oman, L. D., , and A. R. Douglass, 2014: Improvements in total column ozone in GEOSCCM and comparisons with a new ozone-depleting substances scenario. J. Geophys. Res. Atmos., 119, 56135624, doi:10.1002/2014JD021590.

    • Search Google Scholar
    • Export Citation
  • Pascoe, C. L., , L. J. Gray, , S. A. Crooks, , M. N. Juckes, , and M. P. Baldwin, 2005: The quasi-biennial oscillation: Analysis using ERA-40 data. J. Geophys. Res., 110, D08105, doi:10.1029/2004JD004941.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., , and M. Fiorino, 1998: A comparison of reanalyses in the tropical stratosphere. Part 2: The quasi-biennial oscillation. Climate Dyn., 14, 645658, doi:10.1007/s003820050247.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., , and R. C. Bell, 1982: A model of the quasi-biennial oscillation on an equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 108, 335352, doi:10.1002/qj.49710845604.

    • Search Google Scholar
    • Export Citation
  • Politowicz, P. A., , and M. H. Hitchman, 1997: Exploring the effects of forcing quasi-biennial oscillations in a two-dimensional model. J. Geophys. Res., 102, 16 48116 497, doi:10.1029/97JD00693.

    • Search Google Scholar
    • Export Citation
  • Punge, H. J., , and M. A. Giorgetta, 2007: Differences between the QBO in the first and in the second half of the ERA-40 reanalysis. Atmos. Chem. Phys., 7, 599608, doi:10.5194/acp-7-599-2007.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and F. Wu, 1996: Isolation of the ozone QBO in SAGE II by singular-value decomposition. J. Atmos. Sci., 53, 25462559, doi:10.1175/1520-0469(1996)053<2546:IOTOQI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , F. Wu, , R. Swinbank, , J. Nash, , and A. O’Neill, 1999: Global QBO circulation derived from UKMO stratospheric analyses. J. Atmos. Sci., 56, 457474, doi:10.1175/1520-0469(1999)056<0457:GQCDFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ribera, P., , C. Penã-Ortiz, , R. Garcia-Herrera, , D. Gallego, , L. Gimeno, , and E. Hernandez, 2004: Detection of the secondary meridional circulation associated with the quasi-biennial oscillation. J. Geophys. Res., 109, D18112, doi:10.1029/2003JD004363.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., and Coauthors, 2008: QBO and annual cycle variations in tropical lower stratosphere trace gases from HALOE and Aura MLS observations. J. Geophys. Res., 113, D05301, doi:10.1029/2007JD008678.

    • Search Google Scholar
    • Export Citation
  • Strahan, S. E., , L. D. Oman, , A. R. Douglass, , and L. Coy, 2015: Modulation of Antarctic vortex composition by the quasi-biennial oscillation. Geophys. Res. Lett., 42, 42164223, doi:10.1002/2015GL063759.

    • Search Google Scholar
    • Export Citation
  • Swinbank, R., , and A. O’Neill, 1994: Quasi-biennial and semi-annual oscillations in equatorial wind fields constructed from data assimilation. Geophys. Res. Lett., 21, 20992102, doi:10.1029/94GL01743.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., and Coauthors, 2003: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements. J. Geophys. Res., 108, 8238, doi:10.1029/2001JD000967.

    • Search Google Scholar
    • Export Citation
  • Tian, W., , M. P. Chipperfield, , L. J. Gray, , and J. M. Zawodny, 2006: Quasi-biennial oscillation and tracer distributions in a coupled chemistry–climate model. J. Geophys. Res., 111, D20301, doi:10.1029/2005JD006871.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 113 113 43
PDF Downloads 88 88 24

Structure and Dynamics of the Quasi-Biennial Oscillation in MERRA-2

View More View Less
  • 1 NASA GSFC, Greenbelt, and SSAI, Lanham, Maryland
  • 2 NASA GSFC, Greenbelt, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • 3 NASA GSFC, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

The structure, dynamics, and ozone signal of the quasi-biennial oscillation (QBO) produced by the 35-yr NASA Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are examined based on monthly mean output. Along with the analysis of the QBO in assimilation winds and ozone, the QBO forcings created by assimilated observations, dynamics, parameterized gravity wave drag (GWD), and ozone chemistry parameterization are examined and compared with the original MERRA system. Results show that MERRA-2 produces a realistic QBO in the zonal winds, mean meridional circulation, and ozone over the 1980–2015 time period. In particular, the MERRA-2 zonal winds show improved representation of the QBO 50-hPa westerly phase amplitude at Singapore when compared to MERRA. The use of limb ozone observations creates improved vertical structure and realistic downward propagation of the ozone QBO signal during times when the MLS ozone limb observations are available (from October 2004 to present). The increased equatorial GWD in MERRA-2 has reduced the zonal wind data analysis contribution compared to MERRA so that the QBO mean meridional circulation can be expected to be more physically forced and therefore more physically consistent. This can be important for applications in which MERRA-2 winds are used to drive transport experiments.

Corresponding author address: Lawrence Coy, NASA GSFC Code 610.1, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: lawrence.coy@nasa.gov

Abstract

The structure, dynamics, and ozone signal of the quasi-biennial oscillation (QBO) produced by the 35-yr NASA Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are examined based on monthly mean output. Along with the analysis of the QBO in assimilation winds and ozone, the QBO forcings created by assimilated observations, dynamics, parameterized gravity wave drag (GWD), and ozone chemistry parameterization are examined and compared with the original MERRA system. Results show that MERRA-2 produces a realistic QBO in the zonal winds, mean meridional circulation, and ozone over the 1980–2015 time period. In particular, the MERRA-2 zonal winds show improved representation of the QBO 50-hPa westerly phase amplitude at Singapore when compared to MERRA. The use of limb ozone observations creates improved vertical structure and realistic downward propagation of the ozone QBO signal during times when the MLS ozone limb observations are available (from October 2004 to present). The increased equatorial GWD in MERRA-2 has reduced the zonal wind data analysis contribution compared to MERRA so that the QBO mean meridional circulation can be expected to be more physically forced and therefore more physically consistent. This can be important for applications in which MERRA-2 winds are used to drive transport experiments.

Corresponding author address: Lawrence Coy, NASA GSFC Code 610.1, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: lawrence.coy@nasa.gov
Save