• Baran, A. J., 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 110, 12391260, doi:10.1016/j.jqsrt.2009.02.026.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 4569, doi:10.1016/j.atmosres.2012.04.010.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., , and S. Havemann, 1999: Rapid computation of the optical properties of hexagonal columns using complex angular momentum theory. J. Quant. Spectrosc. Radiat. Transfer, 63, 499519, doi:10.1016/S0022-4073(99)00035-7.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., , and L.-C. Labonnote, 2007: A self-consistent scattering model for cirrus. 1: The solar region. Quart. J. Roy. Meteor. Soc., 133, 18991912, doi:10.1002/qj.164.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., , P. J. Connolly, , and C. Lee, 2009: Testing an ensemble model of cirrus ice crystals using mid-latitude in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth. J. Quant. Spectrosc. Radiat. Transfer, 110, 15791598, doi:10.1016/j.jqsrt.2009.02.021.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., , A. Bodas-Salcedo, , R. J. Cotton, , and C. Lee, 2011a: Simulating the equivalent radar reflectivity of cirrus at 94 GHz using an ensemble model of cirrus ice crystals: A test of the Met Office global numerical weather prediction model. Quart. J. Roy. Meteor. Soc., 137, 15471560, doi:10.1002/qj.870.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., , P. J. Connolly, , A. J. Heymsfield, , and A. Bansemer, 2011b: Using in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth obtained during the tropical ACTIVE campaign to test an ensemble model of cirrus ice crystals. Quart. J. Roy. Meteor. Soc., 137, 199218, doi:10.1002/qj.731.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., , R. Cotton, , K. Furtado, , S. Havemann, , L.-C. Labonnote, , F. Marenco, , A. J. Smith, , and J.-C. Thelen, 2014a: A self-consistent scattering model for cirrus. Part II: The high and low frequencies. Quart. J. Roy. Meteor. Soc., 140, 10391057, doi:10.1002/qj.2193.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., , P. Hill, , K. Furtado, , P. Field, , and J. Manners, 2014b: A coupled cloud physics–radiation parameterization of the bulk optical properties of cirrus and its impact on the Met Office Unified Model Global Atmosphere 5.0 configuration. J. Climate, 27, 77257752, doi:10.1175/JCLI-D-13-00700.1.

    • Search Google Scholar
    • Export Citation
  • Bi, L., , and P. Yang, 2014: High-frequency extinction efficiencies of spheroids: Rigorous T-matrix solutions and semi-empirical approximations. Opt. Express, 22, 10 27010 293, doi:10.1364/OE.22.010270.

    • Search Google Scholar
    • Export Citation
  • Corti, T., , B. P. Luo, , Q. Fu, , H. Vömel, , and T. Peter, 2006: The impact of cirrus clouds on tropical troposphere-to-stratosphere transport. Atmos. Chem. Phys., 6, 25392547, doi:10.5194/acp-6-2539-2006.

    • Search Google Scholar
    • Export Citation
  • Cotton, R., , S. Osborne, , Z. Ulanowski, , E. Hirst, , P. H. Kaye, , and R. S. Greenaway, 2010: The ability of the Small Ice Detector (SID-2) to characterize cloud particle and aerosol morphologies obtained during flights of the FAAM BAe-146 research aircraft. J. Atmos. Oceanic Technol., 27, 290303, doi:10.1175/2009JTECHA1282.1.

    • Search Google Scholar
    • Export Citation
  • Cotton, R., and Coauthors, 2013: The effective density of small ice particles obtained from in situ aircraft observations of mid-latitude cirrus. Quart. J. Roy. Meteor. Soc., 139, 19231934, doi:10.1002/qj.2058.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., , and R. J. Hogan, 2010: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Deng, M., , G. G. Mace, , Z. Wang, , and H. Okamoto, 2010: Tropical Composition, Cloud and Climate Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115, D00J15, doi:10.1029/2009JD013104.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., , and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689719, doi:10.1002/qj.49712253107.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., , S. Havemann, , J.-C. Thelen, , and A. J. Baran, 2007: A new parameterization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM. Atmos. Res., 83, 1935, doi:10.1016/j.atmosres.2006.03.002.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60, 544560, doi:10.1175/1520-0469(2003)060<0544:AASOIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , A. J. Heymsfield, , and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, doi:10.1175/JTECH1922.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , A. J. Heymsfield, , and A. Bansemer, 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64, 43464365, doi:10.1175/2007JAS2344.1.

    • Search Google Scholar
    • Export Citation
  • Foot, J. S., 1988: Some observations of the optical properties of clouds. II: Cirrus. Quart. J. Roy. Meteor. Soc., 114, 145164, doi:10.1002/qj.49711447908.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 2007: A new parameterization of an asymmetry factor of cirrus clouds for climate models. J. Atmos. Sci., 64, 41404150, doi:10.1175/2007JAS2289.1.

    • Search Google Scholar
    • Export Citation
  • Furtado, K., , P. R. Field, , R. Cotton, , and A. J. Baran, 2015: The sensitivity of simulated high clouds to ice crystal fall speed, shape and size distribution. Quart. J. Roy. Meteor. Soc., 141, 15461559, doi:10.1002/qj.2457.

    • Search Google Scholar
    • Export Citation
  • Garrett, T., 2008: Observational quantification of the optical properties of cirrus cloud. Light Scattering Reviews 3, A. Kokhanovsky, Ed., Springer, 3–26.

  • Hardiman, S. C., and Coauthors, 2015: Processes controlling tropical tropopause temperature and stratospheric water vapor in climate models. J. Climate, 28, 65166535, doi:10.1175/JCLI-D-15-0075.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1986: Ice particles observed in a cirriform cloud at −83°C and implications for polar stratospheric clouds. J. Atmos. Sci., 43, 851855, doi:10.1175/1520-0469(1986)043<0851:IPOIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holz, R. E., and Coauthors, 2016: Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals. Atmos. Chem. Phys., 16, 50755090, doi:10.5194/acp-16-5075-2016.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., , and G. Liu, 2015: The characteristics of ice cloud properties derived from CloudSat and CALIPSO measurements. J. Climate, 28, 38803901, doi:10.1175/JCLI-D-14-00666.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., , P. V. Hobbs, , P. H. Herzegh, , and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36, 156162, doi:10.1175/1520-0469(1979)036<0156:SDOPPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2008: Formation of large (~100 μm) ice crystals near the tropical tropopause. Atmos. Chem. Phys., 8, 16211633, doi:10.5194/acp-8-1621-2008.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2016: The NASA Airborne Tropical Tropopause Experiment (ATTREX): High-altitude aircraft measurements in the tropical western Pacific. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00263.1, in press.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , E. F. Emery, , J. W. Strapp, , S. G. Cober, , and G. A. Isaac, 2013: Quantification of the effects of shattering on airborne ice particle measurements. J. Atmos. Oceanic Technol., 30, 25272553, doi:10.1175/JTECH-D-13-00115.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , B. Pilson, , B. Baker, , Q. Mo, , E. Jensen, , L. Pfister, , and P. Bui, 2008: Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layer. Atmos. Chem. Phys., 8, 16091620, doi:10.5194/acp-8-1609-2008.

    • Search Google Scholar
    • Export Citation
  • Lee, J., , P. Yang, , A. E. Dessler, , B.-C. Gao, , and S. Platnick, 2009: Distribution and radiative forcing of tropical thin cirrus clouds. J. Atmos. Sci., 66, 37213731, doi:10.1175/2009JAS3183.1.

    • Search Google Scholar
    • Export Citation
  • Letu, H., , H. Ishimoto, , J. Riedi, , T. Y. Nakajima, , C.-L. Labonnote, , A. J. Baran, , T. M. Nagao, , and M. Skiguchi, 2015: Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission. Atmos. Chem. Phys. Discuss., 15, 31 66531 703, doi:10.5194/acpd-15-31665-2015.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199, doi:10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 2005: Cirrus clouds and climate. McGraw-Hill 2005 Yearbook of Science & Technology, McGraw-Hill, 51–53.

  • Loeb, N. G., , B. A. Wielicki, , D. R. Doelling, , G. L. Smith, , D. F. Keyes, , S. Kato, , N. Manalo-Smith, , and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., , Q. Zhang, , M. Vaughan, , R. Marchand, , G. Stephens, , C. Trepte, , and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , A. J. Heymsfield, , J. Spinhirne, , and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57, 18411853, doi:10.1175/1520-0469(2000)057<1841:TASTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , S. Iacobellis, , and R. C. J. Somerville, 2003: SCM simulations of tropical ice clouds using observationally based parameterizations of microphysics. J. Climate, 16, 16431664, doi:10.1175/1520-0442(2003)016<1643:SSOTIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , A. J. Baran, , W. P. Arnott, , and C. Schmitt, 2006: Testing and comparing the modified anomalous diffraction approximation. J. Atmos. Sci., 63, 29482962, doi:10.1175/JAS3775.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , P. Rasch, , D. Ivanova, , G. M. McFarquar, , and T. Nousiainen, 2008: Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations. Geophys. Res. Lett., 35, L09806, doi:10.1029/2008GL033552.

    • Search Google Scholar
    • Export Citation
  • Murray, B. J., , C. G. Salzmann, , A. J. Heymsfield, , S. Dobbie, , R. R. Neely III, , and C. J. Cox, 2015: Trigonal ice crystals in Earth’s atmosphere. Bull. Amer. Meteor. Soc., 96, 15191531, doi:10.1175/BAMS-D-13-00128.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 12751285, doi:10.1175/1520-0450(1992)031<1275:STCLDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , M. K. Griffin, , and G. C. Dodd, 1989: Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications. J. Appl. Meteor., 28, 9198, doi:10.1175/1520-0450(1989)028<0091:OSAMPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , Z. Wang, , and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, doi:10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. C., , and G. G. Mace, 2010: Co-occurrence statistics of tropical tropopause layer cirrus with lower cloud layers as derived from CloudSat and CALIPSO data. J. Geophys. Res., 115, D20215, doi:10.1029/2009JD012778.

    • Search Google Scholar
    • Export Citation
  • Sourdeval, O., , C.-L. Labonnote, , A. J. Baran, , and G. Brogniez, 2015: A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part I: Information content and case study. Quart. J. Roy. Meteor. Soc., 141, 870882, doi:10.1002/qj.2405.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , S.-C. Tsay, , P. W. Stackhouse Jr., , and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climatic feedback. J. Atmos. Sci., 47, 17421753, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, doi:10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., , F. Eddounia, , J. M. Edwards, , and A. Macke, 2007: Evaluation of cirrus parameterizations for radiative flux computations in climate models using TOVS–ScaRaB satellite observations. J. Climate, 20, 44594475, doi:10.1175/JCLI4251.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, J., , W. Randel, , and E. J. Jensen, 2011: Cirrus cloud–temperature interactions in the tropical tropopause layer: A case study. Atmos. Chem. Phys., 11, 10 08510 095, doi:10.5194/acp-11-10085-2011.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., , E. Hesse, , P. H. Kaye, , and A. J. Baran, 2006: Light scattering by complex ice-analogue crystals. J. Quant. Spectrosc. Radiat. Transfer, 100, 382392, doi:10.1016/j.jqsrt.2005.11.052.

    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1957: Light Scattering by Small Particles. Wiley, 544 pp.

  • van Diedenhoven, B., , A. M. Fridlind, , B. Cairns, , and A. S. Ackerman, 2014: Variation of ice crystal size, shape, and asymmetry parameter in tops of tropical deep convective clouds. J. Geophys. Res. Atmos., 119, 11 80911 825, doi:10.1002/2014JD022385.

    • Search Google Scholar
    • Export Citation
  • Vidot, J., , A. J. Baran, , and P. Brunel, 2015: A new ice cloud parameterization for infrared radiative transfer simulation of cloudy radiances: Evaluation and optimization with IIR observations and ice cloud profile retrieval products. J. Geophys. Res. Atmos., 120, 69376951, doi:10.1002/2015JD023462.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , and A. E. Dessler, 2006: Instantaneous cloud overlap statistics in the tropical area revealed by ICESat/GLAS data. Geophys. Res. Lett., 33, L15804, doi:10.1029/2005GL024350.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., , R. C. Ball, , P. R. Field, , and A. J. Heymsfield, 2004: Theory of growth by differential sedimentation, with application to snowflake formation. Phys. Rev. E, 70, 021403, doi:10.1103/PhysRevE.70.021403.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2015: The Met Office global coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 15091524, doi:10.5194/gmd-8-1509-2015.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , K.-N. Liou, , L. Bi, , C. Liu, , B. Q. Yi, , and B. A. Baum, 2015: On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization. Adv. Atmos. Sci., 32, 3263, doi:10.1007/s00376-014-0011-z.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., , Q. Fu, , and Y. Hu, 2010: Radiative impacts of clouds in the tropical tropopause layer. J. Geophys. Res., 115, D00H12, doi:10.1029/2009JD012393.

    • Search Google Scholar
    • Export Citation
  • Yi, B., , P. Yang, , B. A. Baum, , T. L’Ecuyer, , L. Oreopoulos, , E. J. Mlawer, , A. J. Heymsfield, , and K.-N. Liou, 2013: Influence of ice particle surface roughness on the global cloud radiative effect. J. Atmos. Sci., 70, 27942807, doi:10.1175/JAS-D-13-020.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., , A. E. Dessler, , M. D. Zelinka, , P. Yang, , and T. Wang, 2014: Cirrus feedback on interannual climate fluctuations. Geophys. Res. Lett., 41, 91669173, doi:10.1002/2014GL062095.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 19
PDF Downloads 36 36 14

The Impact of Two Coupled Cirrus Microphysics–Radiation Parameterizations on the Temperature and Specific Humidity Biases in the Tropical Tropopause Layer in a Climate Model

View More View Less
  • 1 Met Office, Exeter, United Kingdom
  • 2 Met Office, Exeter, and University of Leeds, Leeds, United Kingdom
  • 3 Met Office, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

The impact of two different coupled cirrus microphysics–radiation parameterizations on the zonally averaged temperature and humidity biases in the tropical tropopause layer (TTL) of a Met Office climate model configuration is assessed. One parameterization is based on a linear coupling between a model prognostic variable, the ice mass mixing ratio qi, and the integral optical properties. The second is based on the integral optical properties being parameterized as functions of qi and temperature, Tc, where the mass coefficients (i.e., scattering and extinction) are parameterized as nonlinear functions of the ratio between qi and Tc. The cirrus microphysics parameterization is based on a moment estimation parameterization of the particle size distribution (PSD), which relates the mass moment (i.e., second moment if mass is proportional to size raised to the power of 2) of the PSD to all other PSD moments through the magnitude of the second moment and Tc. This same microphysics PSD parameterization is applied to calculate the integral optical properties used in both radiation parameterizations and, thus, ensures PSD and mass consistency between the cirrus microphysics and radiation schemes. In this paper, the temperature-non-dependent and temperature-dependent parameterizations are shown to increase and decrease the zonally averaged temperature biases in the TTL by about 1 K, respectively. The temperature-dependent radiation parameterization is further demonstrated to have a positive impact on the specific humidity biases in the TTL, as well as decreasing the shortwave and longwave biases in the cloudy radiative effect. The temperature-dependent radiation parameterization is shown to be more consistent with TTL and global radiation observations.

Current affiliation: Department of Meteorology, University of Reading, Reading, United Kingdom.

Publisher’s Note: This article was revised on 9 August 2016 to correct the spelling of the fourth author’s name.

Corresponding author address: Dr. Anthony J. Baran, Met Office, Cordouan 2, FitzRoy Road, Exeter, Devon EX1 3PB, United Kingdom. E-mail: anthony.baran@metoffice.gov.uk

Abstract

The impact of two different coupled cirrus microphysics–radiation parameterizations on the zonally averaged temperature and humidity biases in the tropical tropopause layer (TTL) of a Met Office climate model configuration is assessed. One parameterization is based on a linear coupling between a model prognostic variable, the ice mass mixing ratio qi, and the integral optical properties. The second is based on the integral optical properties being parameterized as functions of qi and temperature, Tc, where the mass coefficients (i.e., scattering and extinction) are parameterized as nonlinear functions of the ratio between qi and Tc. The cirrus microphysics parameterization is based on a moment estimation parameterization of the particle size distribution (PSD), which relates the mass moment (i.e., second moment if mass is proportional to size raised to the power of 2) of the PSD to all other PSD moments through the magnitude of the second moment and Tc. This same microphysics PSD parameterization is applied to calculate the integral optical properties used in both radiation parameterizations and, thus, ensures PSD and mass consistency between the cirrus microphysics and radiation schemes. In this paper, the temperature-non-dependent and temperature-dependent parameterizations are shown to increase and decrease the zonally averaged temperature biases in the TTL by about 1 K, respectively. The temperature-dependent radiation parameterization is further demonstrated to have a positive impact on the specific humidity biases in the TTL, as well as decreasing the shortwave and longwave biases in the cloudy radiative effect. The temperature-dependent radiation parameterization is shown to be more consistent with TTL and global radiation observations.

Current affiliation: Department of Meteorology, University of Reading, Reading, United Kingdom.

Publisher’s Note: This article was revised on 9 August 2016 to correct the spelling of the fourth author’s name.

Corresponding author address: Dr. Anthony J. Baran, Met Office, Cordouan 2, FitzRoy Road, Exeter, Devon EX1 3PB, United Kingdom. E-mail: anthony.baran@metoffice.gov.uk
Save