• Ackerley, D., , B. B. Booth, , S. H. Knight, , E. J. Highwood, , D. J. Frame, , M. R. Allen, , and D. P. Rowell, 2011: Sensitivity of twentieth-century Sahel rainfall to sulfate aerosol and CO2 forcing. J. Climate, 24, 49995014, doi:10.1175/JCLI-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., , A. T. Evan, , and B. B. Booth, 2015: Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Climate, 28, 82198246, doi:10.1175/JCLI-D-15-0148.1.

    • Search Google Scholar
    • Export Citation
  • Bao, Z., , Z. Wen, , and R. Wu, 2009: Variability of aerosol optical depth over East Asia and its possible impacts. J. Geophys. Res., 114, D05203, doi:10.1029/2008JD010603.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., , and A. Giannini, 2006: Robust Sahel drying in response to late 20th century forcings. Geophys. Res. Lett., 33, L11706, doi:10.1029/2006GL026067.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., , Y. Ming, , and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, doi:10.1126/science.1204994.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , G. Bellon, , D. Klocke, , S. Sherwood, , S. Fermepin, , and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, doi:10.1038/ngeo1799.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B., , N. J. Dunstone, , P. R. Halloran, , T. Andrews, , and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, doi:10.1038/nature10946.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657, doi:10.1017/CBO9781107415324.016.

  • Ceppi, P., , Y.-T. Hwang, , X. Liu, , D. M. W. Frierson, , and D. L. Hartmann, 2013: The relationship between the ITCZ and the Southern Hemispheric eddy-driven jet. J. Geophys. Res. Atmos., 118, 51365146, doi:10.1002/jgrd.50461.

    • Search Google Scholar
    • Export Citation
  • Chadwick, R., , P. Good, , T. Andrews, , and G. Martin, 2014: Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys. Res. Lett., 41, 610615, doi:10.1002/2013GL058504.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-Y., , J. C. H. Chiang, , M. F. Wehner, , A. R. Friedman, , and R. Ruedy, 2011: Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J. Climate, 24, 25402555, doi:10.1175/2010JCLI4065.1.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., , and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, doi:10.1146/annurev-earth-042711-105545.

    • Search Google Scholar
    • Export Citation
  • Collier, M. A., , L. D. Rotstayn, , K.-Y. Kim, , A. C. Hirst, , and S. J. Jeffrey, 2013: Ocean circulation response to anthropogenic-aerosol and greenhouse gas forcing in the CSIRO-Mk3.6 coupled climate model. Aust. Meteor. Ocean J., 63, 2739.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, doi:10.1017/CBO9781107415324.024.

  • Deser, C., , and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6, 17431753, doi:10.1175/1520-0442(1993)006<1743:SCVOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , and R. Sutton, 2015: Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nat. Climate Change, 5, 757760, doi:10.1038/nclimate2664.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., , and Y. T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, doi:10.1175/JCLI-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., , G. J. Boer, , and G. M. Flato, 1999: The Arctic and Antarctic Oscillations and their projected changes under global warming. Geophys. Res. Lett., 26, 16011604, doi:10.1029/1999GL900317.

    • Search Google Scholar
    • Export Citation
  • Ganguly, D., , P. J. Rasch, , H. Wang, , and J.-H. Yoon, 2012a: Climate response of the South Asian monsoon system to anthropogenic aerosols. J. Geophys. Res., 117, D13209, doi:10.1029/2012JD017508.

    • Search Google Scholar
    • Export Citation
  • Ganguly, D., , P. J. Rasch, , H. Wang, , and J.-H. Yoon, 2012b: Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophys. Res. Lett., 39, L18804, doi:10.1029/2012GL053043.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • Held, I. M., , T. L. Delworth, , J. Lu, , K. U. Findell, , and T. R. Knutson, 2005: Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA, 102, 17 89117 896, doi:10.1073/pnas.0509057102.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., , D. M. W. Frierson, , and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 28452850, doi:10.1002/grl.50502.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , I. M. Held, , D. M. Frierson, , and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , I. M. Held, , and S.-P. Xie, 2014: Contrasting the tropical responses to zonally asymmetric extratropical and tropical thermal forcing. Climate Dyn., 42, 20332043, doi:10.1007/s00382-013-1863-0.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., , D. Tanré, , and O. Boucher, 2002: A satellite view of aerosols in the climate system. Nature, 419, 215223, doi:10.1038/nature01091.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , I. M. Held, , and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, doi:10.5194/acp-10-7017-2010.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , M.-K. Kim, , and K.-M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855864, doi:10.1007/s00382-006-0114-z.

    • Search Google Scholar
    • Export Citation
  • Levy, H., II, , L. W. Horowitz, , M. D. Schwarzkopf, , Y. Ming, , J.-C. Golaz, , V. Naik, , and V. Ramaswamy, 2013: The roles of aerosol direct and indirect effects in past and future climate change. J. Geophys. Res. Atmos., 118, 45214532, doi:10.1002/jgrd.50192.

    • Search Google Scholar
    • Export Citation
  • Li, X., , M. Ting, , C. Li, , and N. Henderson, 2015: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Climate, 28, 41074125, doi:10.1175/JCLI-D-14-00559.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , S. Vavrus, , F. He, , N. Wen, , and Y. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 46844700, doi:10.1175/JCLI3579.1.

    • Search Google Scholar
    • Export Citation
  • Menon, S., , J. Hansen, , L. Nazarenko, , and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 22502253, doi:10.1126/science.1075159.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., , and V. Ramaswamy, 2011: A model investigation of aerosol-induced changes in tropical circulation. J. Climate, 24, 51255133, doi:10.1175/2011JCLI4108.1.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., , V. Ramaswamy, , and G. Chen, 2011: A model investigation of aerosol-induced changes in boreal winter extratropical circulation. J. Climate, 24, 60776091, doi:10.1175/2011JCLI4111.1.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740, doi:10.1017/CBO9781107415324.018.

  • Penner, J. E., and Coauthors, 2001: Aerosols, their direct and indirect effects. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 289–348.

  • Polvani, L. M., , D. W. Waugh, , G. J. Correa, , and S. W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Coauthors, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., , and U. Lohmann, 2002: Tropical rainfall trends and the indirect aerosol effect. J. Climate, 15, 21032116, doi:10.1175/1520-0442(2002)015<2103:TRTATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and Coauthors, 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 29392974, doi:10.5194/acp-13-2939-2013.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , I. M. Held, , and C. S. Bretherton, 2002: The ENSO signal in tropical tropospheric temperature. J. Climate, 15, 27022706, doi:10.1175/1520-0442(2002)015<2702:TESITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, F., , T. Zhou, , and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596603, doi:10.1002/2013GL058705.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., , S. P. Xie, , C. Deser, , Y. Kosaka, , and Y. M. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439443, doi:10.1038/nature11576.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and G. A. Vecchi, 2013: Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Climate, 26, 32313240, doi:10.1175/JCLI-D-12-00441.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , S.-P. Xie, , H. Tokinaga, , Q. Liu, , and Y. Kosaka, 2016: Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing. Geophys. Res. Lett., 43, 34443450, doi:10.1002/2016GL068521.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , Q. Liu, , L. Xu, , and S.-P. Xie, 2013: Response of mode water and Subtropical Countercurrent to greenhouse gas and aerosol forcing in the North Pacific. J. Ocean Univ. China, 12, 222229, doi:10.1007/s11802-013-2193-x.

    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., , E. J. Highwood, , and N. J. Dunstone, 2013: The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett., 8, 024033, doi:10.1088/1748-9326/8/2/024033.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , H. Su, , and J. H. Jiang, 2013: Regional simulation of aerosol impacts on precipitation during the East Asian summer monsoon. J. Geophys. Res. Atmos., 118, 64546467, doi:10.1002/jgrd.50527.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 1996: Westward propagation of latitudinal asymmetry in a coupled ocean–atmosphere model. J. Atmos. Sci., 53, 32363250, doi:10.1175/1520-0469(1996)053<3236:WPOLAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , C. Deser, , G. A. Vecchi, , J. Ma, , H. Teng, , and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , B. Lu, , and B. Xiang, 2013: Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nat. Geosci., 6, 828832, doi:10.1038/ngeo1931.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, doi:10.1038/nclimate2689.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., , and S.-P. Xie, 2015: Ocean mediation of tropospheric response to reflecting and absorbing aerosols. Atmos. Chem. Phys., 15, 58275833, doi:10.5194/acp-15-5827-2015.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., , and A. J. Broccoli, 2008: Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 43994423, doi:10.1175/2008JCLI2172.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., , C. Deser, , A. Clement, , and R. Tomas, 2014: Equatorial signatures of the Pacific meridional modes: Dependence on mean climate state. Geophys. Res. Lett., 41, 568574, doi:10.1002/2013GL058842.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 136 136 40
PDF Downloads 112 112 33

Comparison of Climate Response to Anthropogenic Aerosol versus Greenhouse Gas Forcing: Distinct Patterns

View More View Less
  • 1 Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, and Ocean–Atmosphere Interaction and Climate Laboratory, Ocean University of China, Qingdao, China, and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • 2 Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, and Ocean–Atmosphere Interaction and Climate Laboratory, Ocean University of China, Qingdao, China
© Get Permissions
Restricted access

Abstract

Spatial patterns of climate response to changes in anthropogenic aerosols and well-mixed greenhouse gases (GHGs) are investigated using climate model simulations for the twentieth century. The climate response shows both similarities and differences in spatial pattern between aerosol and GHG runs. Common climate response between aerosol and GHG runs tends to be symmetric about the equator. This work focuses on the distinctive patterns that are unique to the anthropogenic aerosol forcing. The tropospheric cooling induced by anthropogenic aerosols is locally enhanced in the midlatitude Northern Hemisphere with a deep vertical structure around 40°N, anchoring a westerly acceleration in thermal wind balance. The aerosol-induced negative radiative forcing in the Northern Hemisphere requires a cross-equatorial Hadley circulation to compensate interhemispheric energy imbalance in the atmosphere. Associated with a southward shift of the intertropical convergence zone, this interhemispheric asymmetric mode is unique to aerosol forcing and absent in GHG runs. Comparison of key climate response pattern indices indicates that the aerosol forcing dominates the interhemispheric asymmetric climate response in historical all-forcing simulations, as well as regional precipitation change such as the drying trend over the East Asian monsoon region. While GHG forcing dominates global mean surface temperature change, its effect is on par with and often opposes the aerosol effect on precipitation, making it difficult to detect anthropogenic change in rainfall from historical observations.

Corresponding author address: Shang-Ping Xie, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, MC 206, La Jolla, CA 92093-0206. E-mail: sxie@ucsd.edu

Abstract

Spatial patterns of climate response to changes in anthropogenic aerosols and well-mixed greenhouse gases (GHGs) are investigated using climate model simulations for the twentieth century. The climate response shows both similarities and differences in spatial pattern between aerosol and GHG runs. Common climate response between aerosol and GHG runs tends to be symmetric about the equator. This work focuses on the distinctive patterns that are unique to the anthropogenic aerosol forcing. The tropospheric cooling induced by anthropogenic aerosols is locally enhanced in the midlatitude Northern Hemisphere with a deep vertical structure around 40°N, anchoring a westerly acceleration in thermal wind balance. The aerosol-induced negative radiative forcing in the Northern Hemisphere requires a cross-equatorial Hadley circulation to compensate interhemispheric energy imbalance in the atmosphere. Associated with a southward shift of the intertropical convergence zone, this interhemispheric asymmetric mode is unique to aerosol forcing and absent in GHG runs. Comparison of key climate response pattern indices indicates that the aerosol forcing dominates the interhemispheric asymmetric climate response in historical all-forcing simulations, as well as regional precipitation change such as the drying trend over the East Asian monsoon region. While GHG forcing dominates global mean surface temperature change, its effect is on par with and often opposes the aerosol effect on precipitation, making it difficult to detect anthropogenic change in rainfall from historical observations.

Corresponding author address: Shang-Ping Xie, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, MC 206, La Jolla, CA 92093-0206. E-mail: sxie@ucsd.edu
Save