The Multidecadal Variability of the Asymmetric Mode of the Boreal Autumn Hadley Circulation and Its Link to the Atlantic Multidecadal Oscillation

Yipeng Guo State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and College of Earth Science, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Yipeng Guo in
Current site
Google Scholar
PubMed
Close
,
Jianping Li College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Jianping Li in
Current site
Google Scholar
PubMed
Close
,
Juan Feng College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Juan Feng in
Current site
Google Scholar
PubMed
Close
,
Fei Xie College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Fei Xie in
Current site
Google Scholar
PubMed
Close
,
Cheng Sun College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Cheng Sun in
Current site
Google Scholar
PubMed
Close
, and
Jiayu Zheng State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, China

Search for other papers by Jiayu Zheng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous studies show that the first principal mode of the variability of the seasonal mean Hadley circulation (HC) is an equatorial asymmetric mode (AM) with long-term trend. This study demonstrates that the variability of the boreal autumn [September–November (SON)] HC is also dominated by an AM, but with multidecadal variability. The SON AM has ascending and descending branches located at approximately 20°N and 20°S, respectively, and explains about 40% of the total variance. Further analysis reveals that the AM is closely linked to the Atlantic multidecadal oscillation (AMO), which is associated with a large cross-equatorial sea surface temperature (SST) gradient and sea level pressure (SLP) gradient. The cross-equatorial thermal contrast further induces an equatorial asymmetric HC anomaly. Numerical simulations conducted on an atmospheric general circulation model also suggest that AMO-associated SST anomalies can also induce a cross-equatorial SLP gradient and anomalous vertical shear of the meridional wind at the equator, both of which indicate asymmetric HC anomaly. Therefore, the AM of the variability of the boreal autumn HC has close links to the AMO. Further analysis demonstrates that the AMO in SON has a closer relationship with AM than those in the other seasons. A possible reason is that the AMO-associated zonal mean SST anomaly in the tropics has differences among the four seasons, which leads to different atmospheric circulation responses.

The AM in SON has inversed impacts on the tropical precipitation, suggesting that the precipitation difference between the northern and southern tropics has multidecadal variability.

Denotes Open Access content.

Corresponding author address: Dr. Jianping Li, College of Global Change and Earth System Science, Beijing Normal University, No. 19, XinJieKouWai St., Beijing 100875, China. E-mail: ljp@bnu.edu.cn

Abstract

Previous studies show that the first principal mode of the variability of the seasonal mean Hadley circulation (HC) is an equatorial asymmetric mode (AM) with long-term trend. This study demonstrates that the variability of the boreal autumn [September–November (SON)] HC is also dominated by an AM, but with multidecadal variability. The SON AM has ascending and descending branches located at approximately 20°N and 20°S, respectively, and explains about 40% of the total variance. Further analysis reveals that the AM is closely linked to the Atlantic multidecadal oscillation (AMO), which is associated with a large cross-equatorial sea surface temperature (SST) gradient and sea level pressure (SLP) gradient. The cross-equatorial thermal contrast further induces an equatorial asymmetric HC anomaly. Numerical simulations conducted on an atmospheric general circulation model also suggest that AMO-associated SST anomalies can also induce a cross-equatorial SLP gradient and anomalous vertical shear of the meridional wind at the equator, both of which indicate asymmetric HC anomaly. Therefore, the AM of the variability of the boreal autumn HC has close links to the AMO. Further analysis demonstrates that the AMO in SON has a closer relationship with AM than those in the other seasons. A possible reason is that the AMO-associated zonal mean SST anomaly in the tropics has differences among the four seasons, which leads to different atmospheric circulation responses.

The AM in SON has inversed impacts on the tropical precipitation, suggesting that the precipitation difference between the northern and southern tropics has multidecadal variability.

Denotes Open Access content.

Corresponding author address: Dr. Jianping Li, College of Global Change and Earth System Science, Beijing Normal University, No. 19, XinJieKouWai St., Beijing 100875, China. E-mail: ljp@bnu.edu.cn
Save
  • Adam, O., and N. Paldor, 2010: Global circulation in an axially symmetric shallow-water model, forced by off-equatorial differential heating. J. Atmos. Sci., 67, 12751286, doi:10.1175/2009JAS3324.1.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., 2007: Wally was right: Predictive ability of the North Atlantic “conveyor belt” hypothesis for abrupt climate change. Annu. Rev. Earth Planet. Sci., 35, 241272, doi:10.1146/annurev.earth.35.081006.131524.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1995: The influence of Hadley circulation intensity changes on extratropical climate in an idealized model. J. Atmos. Sci., 52, 20062024, doi:10.1175/1520-0469(1995)052<2006:TIOHCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J. Y., B. E. Carlson, and A. D. Del Genio, 2002: Evidence for strengthening of the tropical general circulation in the 1990s. Science, 295, 838841, doi:10.1126/science.1065835.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, doi:10.1146/annurev-earth-042711-105545.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., and B. Bradley, 2004: The Hadley Circulation: Present, Past and Future. Kluwer Academic, 511 pp.

  • Dima, I. M., and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60, 15221527, doi:10.1175/1520-0469(2003)060<1522:OTSOTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, K. Armour, and D. McGee, 2014: The interannual variability of tropical precipitation and interhemispheric energy transport. J. Climate, 27, 33773392, doi:10.1175/JCLI-D-13-00499.1.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, doi:10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Fang, M., and K. K. Tung, 1996: A simple model of nonlinear Hadley circulation with an ITCZ: Analytic and numerical solutions. J. Atmos. Sci., 53, 12411261, doi:10.1175/1520-0469(1996)053<1241:ASMONH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fang, M., and K. K. Tung, 1997: The dependence of the Hadley circulation on the thermal relaxation time. J. Atmos. Sci., 54, 13791384, doi:10.1175/1520-0469(1997)054<1379:TDOTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feng, J., and J. P. Li, 2013: Contrasting impacts of two types of ENSO on the boreal spring Hadley circulation. J. Climate, 26, 47734789, doi:10.1175/JCLI-D-12-00298.1.

    • Search Google Scholar
    • Export Citation
  • Feng, J., J. P. Li, and F. Xie, 2013: Long-term variation of the principal mode of boreal spring Hadley circulation linked to SST over the Indo-Pacific warm pool. J. Climate, 26, 532544, doi:10.1175/JCLI-D-12-00066.1.

    • Search Google Scholar
    • Export Citation
  • Feng, R., J. P. Li, and J. C. Wang, 2011: Regime change of the boreal summer Hadley circulation and its connection with the tropical SST. J. Climate, 24, 38673877, doi:10.1175/2011JCLI3959.1.

    • Search Google Scholar
    • Export Citation
  • Friedman, A. R., Y. T. Hwang, J. C. H. Chiang, and D. M. W. Frierson, 2013: Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Climate, 26, 54195433, doi:10.1175/JCLI-D-12-00525.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., J. Lu, and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi:10.1029/2007GL031115.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179, doi:10.1126/science.1125566.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., M. S. Madhusoodanan, C. P. Neema, and D. Sengupta, 2006: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett., 33, L02706, doi:10.1029/2005GL024803.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, doi:10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 511 pp.

  • Hou, A. Y., 1998: Hadley circulation as a modulator of the extratropical climate. J. Climate, 55, 24372457, doi:10.1175/1520-0469(1998)055<2437:HCAAMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, D. Z., W. S. Tian, F. Xie, J. C. Shu, and S. Dhomse, 2014: Effects of meridional sea surface temperature changes on stratospheric temperature and circulation. Adv. Atmos. Sci., 31, 888900, doi:10.1007/s00376-013-3152-6.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, doi:10.5194/acp-7-5229-2007.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., K. K. Tung, and J. Liu, 2005: A closer comparison of early and late winter atmospheric trends in the Northern Hemisphere. J. Climate, 18, 32043216, doi:10.1175/JCLI3468.1.

    • Search Google Scholar
    • Export Citation
  • Johanson, C. M., and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 27132725, doi:10.1175/2008JCLI2620.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, doi:10.1175/2009JAS2924.1.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., 2001: Atlas of Climate of Global Atmospheric Circulation I (in Chinese). China Meteorology Press, 279 pp.

  • Li, J. P., and Coauthors, 2013a: Progress in air–land–sea interactions in Asia and their role in global and Asian climate change (in Chinese). Chin. J. Atmos. Sci., 37, 518538.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., C. Sun, and F.-F. Jin, 2013b: NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett., 40, 54975502, doi:10.1002/2013GL057877.

    • Search Google Scholar
    • Export Citation
  • Li, Y., J. P. Li, and J. Feng, 2012: A teleconnection between the reduction of rainfall in southwest western Australia and north China. J. Climate, 25, 84448461, doi:10.1175/JCLI-D-11-00613.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1994: Climate dynamics and global change. Annu. Rev. Fluid Mech., 26, 353378, doi:10.1146/annurev.fl.26.010194.002033.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 24162427, doi:10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Ma, J., and J. Li, 2007: Strengthening of the boreal winter Hadley circulation and its connection with ENSO. Prog. Nat. Sci., 17, 13271333.

    • Search Google Scholar
    • Export Citation
  • Ma, J., and J. Li, 2008: The principal modes of variability of the boreal winter Hadley cell. Geophys. Res. Lett., 35, L01808, doi:10.1029/2007GL031883.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1988: Two stable equilibria of a coupled ocean–atmosphere model. J. Climate, 1, 841866, doi:10.1175/1520-0442(1988)001<0841:TSEOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., and A. C. Clement, 2009: Simulated variability in the mean atmospheric meridional circulation over the 20th century. Geophys. Res. Lett., 36, L06704, doi:10.1029/2008GL036741.

    • Search Google Scholar
    • Export Citation
  • Mitas, C. M., and A. Clement, 2005: Has the Hadley cell been strengthening in recent decades? Geophys. Res. Lett., 32, L03809, doi:10.1029/2004GL021765.

    • Search Google Scholar
    • Export Citation
  • Mitas, C. M., and A. Clement, 2006: Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalyses. Geophys. Res. Lett., 33, L01810, doi:10.1029/2005GL024406.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Moura, A. D., and J. Shukla, 1981: On the dynamics of droughts in Northeast Brazil: Observations, theory and numerical experiments with a general circulation model. J. Atmos. Sci., 38, 26532675, doi:10.1175/1520-0469(1981)038<2653:OTDODI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2005: JRA-25: Japanese 25-Year Reanalysis Project—Progress and status. Quart. J. Roy. Meteor. Soc., 131, 32593268, doi:10.1256/qj.05.88.

    • Search Google Scholar
    • Export Citation
  • Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, doi:10.1029/2007JD008411.

    • Search Google Scholar
    • Export Citation
  • Quan, X. W., H. F. Diaz, and M. P. Hoerling, 2004: Change in the tropical Hadley cell since 1950. The Hadley Circulation: Past, Present, and Future, H. F. Diaz and R. S. Bradley, Eds., Cambridge University Press, 85–120.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective analysis for research and applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309, 15511556, doi:10.1126/science.1114867.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Sun, C., J. Li, F.-F. Jin, and R. Ding, 2013: Sea surface temperature inter-hemispheric dipole and its relation to tropical precipitation. Environ. Res. Lett., 8, 044006, doi:10.1088/1748-9326/8/4/044006.

    • Search Google Scholar
    • Export Citation
  • Sun, C., J. Li, J. Feng, and F. Xie, 2015a: A decadal-scale teleconnection between the North Atlantic Oscillation and subtropical eastern Australian rainfall. J. Climate, 28, 10741092, doi:10.1175/JCLI-D-14-00372.1.

    • Search Google Scholar
    • Export Citation
  • Sun, C., J. Li, and F.-F. Jin, 2015b: A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Climate Dyn., 45, 20832099, doi:10.1007/s00382-014-2459-z.

    • Search Google Scholar
    • Export Citation
  • Sun, C., J. Li, and S. Zhao, 2015c: Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci. Rep., 5, 16853, doi:10.1038/srep16853.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., and T. J. Zhou, 2014: How does El Niño affect the interannual variability of the boreal summer Hadley circulation? J. Climate, 27, 26222642, doi:10.1175/JCLI-D-13-00277.1.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H. L., N. Ishizaki, and A. Kitoh, 2004: Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus, 56A, 250269, doi:10.1111/j.1600-0870.2004.00049.x.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, doi:10.1175/JAS3821.1.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 2002: Evidence for large decadal variability in the tropical mean radiative energy budget. Science, 295, 841844, doi:10.1126/science.1065837.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, doi:10.1034/j.1600-0870.1994.t01-1-00001.x.

    • Search Google Scholar
    • Export Citation
  • Zhan, R.-F., Y. Wang, and M. Wen, 2013: The SST gradient between the southwest Pacific and the western Pacific warm pool: A new factor controlling the northwestern Pacific tropical cyclone genesis frequency. J. Climate, 26, 24082415, doi:10.1175/JCLI-D-12-00798.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, H. X., and G. W. K. Moore, 2008: Trends in the boreal summer regional Hadley and Walker circulations as expressed in precipitation records from Asia and Africa during the latter half of the 20th century. Int. J. Climatol., 28, 563578, doi:10.1002/joc.1580.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1588 1187 53
PDF Downloads 349 81 8