The Super Greenhouse Effect in a Changing Climate

Graeme L. Stephens Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, and Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Graeme L. Stephens in
Current site
Google Scholar
PubMed
Close
,
Brian H. Kahn Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Brian H. Kahn in
Current site
Google Scholar
PubMed
Close
, and
Mark Richardson Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Mark Richardson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In all outputs of the 1% yr−1 increase in CO2 climate model experiments archived under the World Climate Research Programme’s (WCRP) phase 5 of the Coupled Model Intercomparison Project (CMIP5), regions exist in the low latitudes where both the clear-sky and all-sky OLR decrease with surface warming. These are identified as regions of positive longwave feedback and are regions of a super greenhouse effect (SGE). These SGE regions are identified from feedback analysis of the 4 × CO2 abrupt experiments of CMIP5, and despite their existence, there is little agreement across models as to the magnitude of the effect. The general effects of clouds on the SGE are to amplify the clear-sky SGE, but there is also poor agreement on the magnitude of the amplification that varies by an order of magnitude across models. Sensitivity analyses indicate that localized SGE regions are spatially aligned with a large moistening of the upper troposphere. The reduction in clear-sky OLR arises from a reduction in emission in the far IR with nonnegligible contributions from mid-IR emission from the midtroposphere. When viewed in the broader context of meridional heat transport, it is found that of the 1.03-PW rate of heat gained globally, 0.8 PW is absorbed in the tropics and is contributed almost equally by reductions in clear-sky longwave emission (i.e., the clear-sky SGE) and increased absorbed clear-sky solar radiation associated with increased water vapor. The processes that define the clear-sky SGE are shown to be fundamental to the way models accumulate heat and then transport it poleward.

Corresponding author address: Graeme Stephens, Jet Propulsion Laboratory, 4800 Oak Grove Dr., Mail Stop 233-304, Pasadena, CA 91109.E-mail: graeme.stephens@jpl.nasa.gov

Abstract

In all outputs of the 1% yr−1 increase in CO2 climate model experiments archived under the World Climate Research Programme’s (WCRP) phase 5 of the Coupled Model Intercomparison Project (CMIP5), regions exist in the low latitudes where both the clear-sky and all-sky OLR decrease with surface warming. These are identified as regions of positive longwave feedback and are regions of a super greenhouse effect (SGE). These SGE regions are identified from feedback analysis of the 4 × CO2 abrupt experiments of CMIP5, and despite their existence, there is little agreement across models as to the magnitude of the effect. The general effects of clouds on the SGE are to amplify the clear-sky SGE, but there is also poor agreement on the magnitude of the amplification that varies by an order of magnitude across models. Sensitivity analyses indicate that localized SGE regions are spatially aligned with a large moistening of the upper troposphere. The reduction in clear-sky OLR arises from a reduction in emission in the far IR with nonnegligible contributions from mid-IR emission from the midtroposphere. When viewed in the broader context of meridional heat transport, it is found that of the 1.03-PW rate of heat gained globally, 0.8 PW is absorbed in the tropics and is contributed almost equally by reductions in clear-sky longwave emission (i.e., the clear-sky SGE) and increased absorbed clear-sky solar radiation associated with increased water vapor. The processes that define the clear-sky SGE are shown to be fundamental to the way models accumulate heat and then transport it poleward.

Corresponding author address: Graeme Stephens, Jet Propulsion Laboratory, 4800 Oak Grove Dr., Mail Stop 233-304, Pasadena, CA 91109.E-mail: graeme.stephens@jpl.nasa.gov
Save
  • Andrews, T., and M. Ringer, 2014: Cloud feedbacks, rapid adjustments, and the forcing–response relationship in a transient CO2 reversibility scenario. J. Climate, 27, 17991818, doi:10.1175/JCLI-D-13-00421.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, and M. J. Webb, 2015: The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Climate, 28, 16301648, doi:10.1175/JCLI-D-14-00545.1.

    • Search Google Scholar
    • Export Citation
  • Arrhenius, S., 1896: On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag., 41, 237276, doi:10.1080/14786449608620846.

    • Search Google Scholar
    • Export Citation
  • Bates, R., 1999: A dynamical stabilizer in the climate system: A mechanism suggested by a simple model. Tellus, 51A, 349372, doi:10.1034/j.1600-0870.1999.t01-3-00002.x.

    • Search Google Scholar
    • Export Citation
  • Bornemann, A., and Coauthors, 2008: Isotopic evidence for glaciation during the Cretaceous supergreenhouse. Science, 319, 189192, doi:10.1126/science.1148777.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: The Atmospheric Infrared Sounder (AIRS): Improving weather forecasting and providing new insights into climate. Bull. Amer. Meteor. Soc., 87, 911926, doi:10.1175/BAMS-87-7-911.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., B. Soden, B. J. Sohn, and L. Shi, 2014: Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl. Acad. Sci. USA, 111, 11 63611 641, doi:10.1073/pnas.1409659111.

    • Search Google Scholar
    • Export Citation
  • DeAngelis, A. M., X. Qu, M. D. Zelinka, and A. Hall, 2015: An observational radiative constraint on hydrologic cycle intensification. Nature, 528, 249253, doi:10.1038/nature15770.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. M. Davis, 2010: Trends in tropospheric humidity from reanalysis systems. J. Geophys. Res., 115, D19127, doi:10.1029/2010JD014192.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., P. Yang, J. Lee, J. Solbrig, and K. Minschwaner, 2008: An analysis of the dependence of clear-sky top-of-atmosphere outgoing longwave radiation on atmospheric temperature and water vapor. J. Geophys. Res., 113, D17102, doi:10.1029/2008JD010137.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, and K. H. Rosenlof, 2013: Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA, 110, 18 08718 091, doi:10.1073/pnas.1310344110.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., K. C. Armour, A. G. Pendergrass, and D. S. Battisti, 2014: Shortwave and longwave radiative contributions to global warming under increasing CO2. Proc. Natl. Acad. Sci. USA, 111, 16 70016 705, doi:10.1073/pnas.1412190111.

    • Search Google Scholar
    • Export Citation
  • Fourier, J., 1824: Remarques générales sur les températures du globe terrestre et des espaces planétaires (General remarks on the temperature of the Earth and outer space). Ann. Chem. Phys., 27, 136167.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, doi:10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gambacorta, A., C. Barnet, B. Soden, and L. Strow, 2008: An assessment of the tropical humidity-temperature covariance using AIRS. Geophys. Res. Lett., 35, L10814, doi:10.1029/2008GL033805.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. K. Inamdar, 1993: Observations of seasonal variations in atmospheric greenhouse trapping and its enhancement at high sea surface temperature. J. Climate, 6, 920931, doi:10.1175/1520-0442(1993)006<0920:OOSVIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, doi:10.1146/annurev.energy.25.1.441.

    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., T. L’Ecuyer, G. Stephens, P. Partain, and M. Sekiguchi, 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853871, doi:10.1175/JAMC-D-12-025.1.

    • Search Google Scholar
    • Export Citation
  • Hong, A. C., C. J. Young, M. D. Hurley, T. J. Wallington, and S. A. Mabury, 2013: Perfluorotributylamine: A novel long-lived greenhouse gas. Geophys. Res. Lett., 40, 60106015, doi:10.1002/2013GL058010.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • L’Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr., 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52, 17841806, doi:10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raval, A., and V. Ramanathan, 1989: Observational determination of the greenhouse effect. Nature, 342, 758761, doi:10.1038/342758a0.

  • Santer, B. D., and Coauthors, 2007: Identification of human-induced changes in atmospheric moisture content. Proc. Natl. Acad. Sci. USA, 104, 15 24815 253, doi:10.1073/pnas.0702872104.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., W. Ingram, Y. Tsushima, M. Satoh, M. Roberts, P. L. Vidale, and P. A. O’Gorman, 2010: Relative humidity changes in a warmer climate. J. Geophys. Res., 115, D09104, doi:10.1029/2009JD012585.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, doi:10.1175/JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., D. L. Jackson, V. Ramaswamy, M. D. Schwarzkopf, and X. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 310, 841844, doi:10.1126/science.1115602.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. J. Greenwald, 1991: The Earth’s radiation budget and its relation to atmospheric hydrology: 1. Observations of the clear sky greenhouse effect. J. Geophys. Res., 96, 15 31115 324, doi:10.1029/91JD00973.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Y. Hu, 2010: Are climate-related changes to the character of global precipitation predictable? Environ. Res. Lett., 5, 025209, doi:10.1088/1748-9326/5/2/025209.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. M. Gabriel, and P. T. Partain, 2001: Parameterization of atmospheric radiative transfer. Part I: Validity of simple models. J. Atmos. Sci., 58, 33913409, doi:10.1175/1520-0469(2001)058<3391:POARTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. O’Brien, P. Pilewskie, S. Kato, and J. Li, 2015: The albedo of Earth. Rev. Geophys., 53, 141163, doi:10.1002/2014RG000449.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and the AIRS Science Team, 2013: AIRS/Aqua L2 Support Retrieval (AIRS+AMSU) V006. Goddard Earth Sciences Data and Information Services Center, accessed 2 June 2016, doi:10.5067/AQUA/AIRS/DATA207.

  • Tyndall, J., 1861: On the absorption and radiation of heat by gases and vapours. Philos. Mag., 22, 169–194, 273–285.

  • Valero, F. P., W. D. Collins, P. Pilewskie, A. Bucholtz, and P. J. Flatau, 1997: Direct radiometric observations of the water vapor greenhouse effect over the equatorial Pacific Ocean. Science, 275, 17731776, doi:10.1126/science.275.5307.1773.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608623, doi:10.1175/JCLI-D-11-00096.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and Y. Huang, 2014: Radiative forcing of quadrupling CO2. J. Climate, 27, 24962508, doi:10.1175/JCLI-D-13-00535.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2625 873 60
PDF Downloads 1594 253 12