Linear Additive Impacts of Arctic Sea Ice Reduction and La Niña on the Northern Hemisphere Winter Climate

Zhe Han China University of Geosciences, Wuhan, and Institute of Atmospheric Physics/RCE-TEA, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhe Han in
Current site
Google Scholar
PubMed
Close
,
Shuanglin Li China University of Geosciences, Wuhan, and Institute of Atmospheric Physics/RCE-TEA, Chinese Academy of Sciences, Beijing, China

Search for other papers by Shuanglin Li in
Current site
Google Scholar
PubMed
Close
,
Jiping Liu Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Jiping Liu in
Current site
Google Scholar
PubMed
Close
,
Yongqi Gao Institute of Atmospheric Physics/RCE-TEA, Chinese Academy of Sciences, Beijing, China, and Nansen Environmental and Remote Sensing Center/Bjerknes Center for Climate Research, Bergen, Norway

Search for other papers by Yongqi Gao in
Current site
Google Scholar
PubMed
Close
, and
Ping Zhao State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Ping Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Both Arctic sea ice loss and La Niña events can result in cold conditions in midlatitude Eurasia in winter. Since the two forcings sometimes occur simultaneously, determining whether they are independent of each other is undertaken first. The result suggests an overall independence. Considering possible interactions between them, their coordinated impacts on the Northern Hemisphere winter climate are then investigated based on observational data analyses, historical simulation analyses from one coupled model (MPI-ESM-LR) contributing to CMIP5, and atmospheric general circulation model sensitive experiments in ECHAM5. The results show that the impacts of the two forcings are overall linearly accumulated. In comparison with one single forcing, there is intensified cooling response in midlatitude Eurasia along with northern warmer–southern cooler dipolar temperature responses over North America. Despite the additive linearity, additive nonlinearity between the two forcings is identifiable. The nonlinearity causes midlatitude Eurasian cooling weakened by one-tenth to one-fifth as much as their individual impacts in combination. The underlying mechanisms for the weak additive nonlinearity are finally explored by transient adjustment AGCM runs with one single forcing or both the forcings switched on suddenly. The day-to-day evolution of responses suggests that the additive nonlinearity may arise initially from the forced wave dynamics and then be amplified because of the involvement of transient eddy feedbacks.

Corresponding author address: Dr. Shuanglin Li, CCRC/IAP/CAS, P.O. Box 9804, Beijing 100029, China. E-mail: shuanglin.li@mail.iap.ac.cn

Abstract

Both Arctic sea ice loss and La Niña events can result in cold conditions in midlatitude Eurasia in winter. Since the two forcings sometimes occur simultaneously, determining whether they are independent of each other is undertaken first. The result suggests an overall independence. Considering possible interactions between them, their coordinated impacts on the Northern Hemisphere winter climate are then investigated based on observational data analyses, historical simulation analyses from one coupled model (MPI-ESM-LR) contributing to CMIP5, and atmospheric general circulation model sensitive experiments in ECHAM5. The results show that the impacts of the two forcings are overall linearly accumulated. In comparison with one single forcing, there is intensified cooling response in midlatitude Eurasia along with northern warmer–southern cooler dipolar temperature responses over North America. Despite the additive linearity, additive nonlinearity between the two forcings is identifiable. The nonlinearity causes midlatitude Eurasian cooling weakened by one-tenth to one-fifth as much as their individual impacts in combination. The underlying mechanisms for the weak additive nonlinearity are finally explored by transient adjustment AGCM runs with one single forcing or both the forcings switched on suddenly. The day-to-day evolution of responses suggests that the additive nonlinearity may arise initially from the forced wave dynamics and then be amplified because of the involvement of transient eddy feedbacks.

Corresponding author address: Dr. Shuanglin Li, CCRC/IAP/CAS, P.O. Box 9804, Beijing 100029, China. E-mail: shuanglin.li@mail.iap.ac.cn
Save
  • Cohen, J. L., J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 011004, doi:10.1088/1748-9326/7/1/014007.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. L., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. Wallace, D. S. Battisti, E. J. Steig, A. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Dong, B.-W., R. T. Sutton, S. P. Jewson, A. O’Neill, and J. M. Slingo, 2000: Predictable winter climate in the North Atlantic sector during the 1997–1999 ENSO cycle. Geophys. Res. Lett., 27, 985988, doi:10.1029/1999GL010994.

    • Search Google Scholar
    • Export Citation
  • Francis, J., W. Chan, D. Leathers, J. Miller, and D. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, doi:10.1029/2009GL037274.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., J. Lu, and K. A. Peterson, 2004: Nonstationary impact of ENSO on Euro-Atlantic winter climate. Geophys. Res. Lett., 31, L02208, doi:10.1029/2003GL018542.

    • Search Google Scholar
    • Export Citation
  • Guo, D., Y. Q. Gao, I. Bethke, D. Y. Gong, O. M. Johannessen, and H. J. Wang, 2014: Mechanism on how the spring Arctic sea ice impacts the East Asian summer monsoon. Theor. Appl. Climatol., 115, 107119, doi:10.1007/s00704-013-0872-6.

    • Search Google Scholar
    • Export Citation
  • Han, Z., S. L. Li, and M. Mu, 2011: The role of warm North Atlantic SST in the formation of positive height anomalies over the Ural Mountains during January 2008. Adv. Atmos. Sci., 28, 246256, doi:10.1007/s00376-010-0069-1.

    • Search Google Scholar
    • Export Citation
  • He, S., H. Wang, and J. Liu, 2013: Changes in the relationship between ENSO and Asia–Pacific midlatitude winter atmospheric circulation. J. Climate, 26, 33773393, doi:10.1175/JCLI-D-12-00355.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46, 163174, doi:10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, T. Xu, G. T. Bates, and A. S. Phillips, 2004: Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Climate Dyn., 23, 391405, doi:10.1007/s00382-004-0433-x.

    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, doi:10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, C., 1988: Frequent activities of stronger aero troughs in East Asia in wintertime and the occurrence of the El Niño event. Sci. China, 31B, 976985.

    • Search Google Scholar
    • Export Citation
  • Li, C., and S. Li, 2014: Interannual seesaw between the Somali and the Australian cross-equatorial flows and its connection to East Asian summer monsoon. J. Climate, 27, 39663981, doi:10.1175/JCLI-D-13-00288.1.

    • Search Google Scholar
    • Export Citation
  • Li, F., and H. Wang, 2013: Autumn sea ice cover, winter Northern Hemisphere annular mode and winter precipitation in Eurasia. J. Climate, 26, 39683981, doi:10.1175/JCLI-D-12-00380.1.

    • Search Google Scholar
    • Export Citation
  • Li, S., W. A. Robinson, M. P. Hoerling, and K. M. Weickmann, 2007: Dynamics of the extratropical response to a tropical Atlantic SST anomaly. J. Climate, 20, 560574, doi:10.1175/JCLI4014.1.

    • Search Google Scholar
    • Export Citation
  • Li, S., J. Perlwitz, M. P. Hoerling, and X. T. Chen, 2010: Opposite annular responses of Northern and Southern Hemisphere to Indian Ocean warming. J. Climate, 23, 37203738, doi:10.1175/2010JCLI3410.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and N.-C. Lau, 2012: Impact of ENSO on the atmospheric variability over the North Atlantic in late winter—Role of transient eddies. J. Climate, 25, 320342, doi:10.1175/JCLI-D-11-00037.1.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, doi:10.1073/pnas.1114910109.

    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, doi:10.1038/ngeo2277.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, 28, 79177932, doi:10.1175/JCLI-D-14-00822.1.

    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara Sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., S. Li, and S. Peng, 2003: Dynamical nonlinearity in the atmospheric response to Atlantic sea surface temperature anomalies. Geophys. Res. Lett., 30, 2038, doi:10.1029/2003GL018416.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp.

  • Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 37713791, doi:10.1175/JCLI3824.1.

    • Search Google Scholar
    • Export Citation
  • Sato, K., J. Inoue, and M. Watanabe, 2014: Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett., 9, 101003, doi:10.1088/1748-9326/9/8/084009.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, doi:10.1007/s00382-013-1830-9.

    • Search Google Scholar
    • Export Citation
  • Semenov, V. A., and M. Latif, 2015: Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966–2012. Environ. Res. Lett., 10, 054020, doi:10.1088/1748-9326/10/5/054020.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., 2014: Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global Planet. Change, 117, 5263, doi:10.1016/j.gloplacha.2014.03.003.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wen, M., S. Yang, A. Kumar, and P. Zhang, 2009: An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008. Mon. Wea. Rev., 137, 11111131, doi:10.1175/2008MWR2638.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Su, and R. Zhang, 2011: Effects of autumn–winter Arctic sea ice on winter Siberian high. Chin. Sci. Bull., 56, 32203228, doi:10.1007/s11434-011-4696-4.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Su, and R. D’Arrigo, 2015: Patterns of Asian winter climate variability and links to Arctic sea ice. J. Climate, 28, 68416858, doi:10.1175/JCLI-D-14-00274.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., J. Li, Z. Jiang, and J. He, 2011: Predictable climate dynamics of abnormal East Asian winter monsoon: Once-in-a-century snowstorms in 2007/2008 winter. Climate Dyn., 37, 16611669, doi:10.1007/s00382-010-0938-4.

    • Search Google Scholar
    • Export Citation
  • Yang, X.-Y., and X. Yuan, 2014: The early winter sea ice variability under the recent Arctic climate shift. J. Climate, 27, 50925110, doi:10.1175/JCLI-D-13-00536.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., J. C. L. Chan, W. Chen, J. Ling, J. G. Pinto, and Y. Shao, 2009: Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137, 39783991, doi:10.1175/2009MWR2952.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2684 1172 61
PDF Downloads 398 139 7