A Robust but Spurious Pattern of Climate Change in Model Projections over the Tropical Indian Ocean

Gen Li State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China

Search for other papers by Gen Li in
Current site
Google Scholar
PubMed
Close
,
Shang-Ping Xie Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Key Laboratory of Ocean–Atmosphere Interaction and Climate in Universities of Shandong, Ocean University of China, Qingdao, Shandong, China

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
, and
Yan Du State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China

Search for other papers by Yan Du in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate models consistently project reduced surface warming over the eastern equatorial Indian Ocean (IO) under increased greenhouse gas (GHG) forcing. This IO dipole (IOD)-like warming pattern, regarded as robust based on consistency among models by the new Intergovernmental Panel on Climate Change (IPCC) report, results in a large increase in the frequency of extreme positive IOD (pIOD) events, elevating the risk of climate and weather disasters in the future over IO rim countries. These projections, however, do not consider large model biases in both the mean state and interannual IOD variance. In particular, a “present–future relationship” is identified between the historical simulations and representative concentration pathway (RCP) 8.5 experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel ensemble: models with an excessive IOD amplitude bias tend to project a strong IOD-like warming pattern in the mean and a large increase in extreme pIOD occurrences under increased GHG forcing. This relationship links the present simulation errors to future climate projections, and is also consistent with our understanding of Bjerknes ocean–atmosphere feedback. This study calibrates regional climate projections by using this present–future relationship and observed IOD amplitude. The results show that the projected IOD-like pattern of mean changes and frequency increase of extreme pIOD events are largely artifacts of model errors and unlikely to emerge in the future. These results illustrate that a robust projection may still be biased and it is important to consider the model bias effect.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0565.s1.

Corresponding author address: Gen Li, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China. E-mail: ligen@scsio.ac.cn

Abstract

Climate models consistently project reduced surface warming over the eastern equatorial Indian Ocean (IO) under increased greenhouse gas (GHG) forcing. This IO dipole (IOD)-like warming pattern, regarded as robust based on consistency among models by the new Intergovernmental Panel on Climate Change (IPCC) report, results in a large increase in the frequency of extreme positive IOD (pIOD) events, elevating the risk of climate and weather disasters in the future over IO rim countries. These projections, however, do not consider large model biases in both the mean state and interannual IOD variance. In particular, a “present–future relationship” is identified between the historical simulations and representative concentration pathway (RCP) 8.5 experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel ensemble: models with an excessive IOD amplitude bias tend to project a strong IOD-like warming pattern in the mean and a large increase in extreme pIOD occurrences under increased GHG forcing. This relationship links the present simulation errors to future climate projections, and is also consistent with our understanding of Bjerknes ocean–atmosphere feedback. This study calibrates regional climate projections by using this present–future relationship and observed IOD amplitude. The results show that the projected IOD-like pattern of mean changes and frequency increase of extreme pIOD events are largely artifacts of model errors and unlikely to emerge in the future. These results illustrate that a robust projection may still be biased and it is important to consider the model bias effect.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0565.s1.

Corresponding author address: Gen Li, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China. E-mail: ligen@scsio.ac.cn

Supplementary Materials

    • Supplemental Materials (DOCX 1.62 MB)
Save
  • Abe, M., H. Shiogama, T. Nozawa, and S. Emori, 2011: Estimation of future surface temperature changes constrained using the future–present correlated modes in inter-model variability of CMIP3 multimodel simulations. J. Geophys. Res., 116, D18104, doi:10.1029/2010JD015111.

    • Search Google Scholar
    • Export Citation
  • Abram, N. J., M. K. Gagan, M. T. McCulloch, J. Chappell, and W. S. Hantoro, 2003: Coral reef death during the 1997 Indian Ocean dipole linked to Indonesian wildfires. Science, 301, 952955, doi:10.1126/science.1083841.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, doi:10.1029/2003GL017926.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J.-J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18, 45144530, doi:10.1175/JCLI3541.1.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, E., J. M. Slingo, and K. R. Sperber, 2003: An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Wea. Rev., 131, 7494, doi:10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boé, J., A. Hall, and X. Qu, 2009: September sea-ice cover in the Arctic ocean projected to vanish by 2100. Nat. Geosci., 2, 341343, doi:10.1038/ngeo467.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and D. B. Stephenson, 2012: Higher precision estimates of regional polar warming by ensemble regression of climate model projections. Climate Dyn., 39, 28052821, doi:10.1007/s00382-012-1330-3.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and D. B. Stephenson, 2013: On the robustness of emergent constraints used in multimodel climate change projections of Arctic warming. J. Climate, 26, 669678, doi:10.1175/JCLI-D-12-00537.1.

    • Search Google Scholar
    • Export Citation
  • Brown, S. J., J. M. Murphy, D. M. H. Sexton, and G. R. Harris, 2014: Climate projections of future extreme events accounting for modelling uncertainties and historical simulation biases. Climate Dyn., 43, 26812705, doi:10.1007/s00382-014-2080-1.

    • Search Google Scholar
    • Export Citation
  • Buser, C. M., H. R. Künsch, D. Lüthi, M. Wild, and C. Schär, 2009: Bayesian multi-model projection of climate: Bias assumptions and interannual variability. Climate Dyn., 33, 849868, doi:10.1007/s00382-009-0588-6.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2013: Why is the amplitude of the Indian Ocean dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett., 40, 12001205, doi:10.1002/grl.50208.

    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, and M. Raupach, 2009a: Positive Indian Ocean dipole events precondition southeast Australia bushfires. Geophys. Res. Lett., 36, L19710, doi:10.1029/2009GL039902.

    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, and A. Sullivan, 2009b: Recent unprecedented skewness towards positive Indian Ocean dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett., 36, L11705, doi:10.1029/2009GL037604.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Sullivan, and T. Cowan, 2009c: Climate change contributes to more frequent consecutive positive Indian Ocean dipole events. Geophys. Res. Lett., 36, L23704, doi:10.1029/2009GL040163.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Sullivan, T. Cowan, J. Ribbe, and G. Shi, 2011: Simulation of the Indian Ocean dipole: A relevant criterion for selecting models for climate projections. Geophys. Res. Lett., 38, L03704, doi:10.1029/2010GL046242.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Santoso, G. J. Wang, E. Weller, L. Wu, K. Ashok, Y. Masumoto, and T. Yamagata, 2014: Increased frequency of extreme Indian Ocean dipole events due to greenhouse warming. Nature, 510, 254258, doi:10.1038/nature13327.

    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2006: Climate fluctuations of tropical coupled system—The role of ocean dynamics. J. Climate, 19, 51225174, doi:10.1175/JCLI3903.1.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2014: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Collins, M., R. E. Chandler, P. M. Cox, J. M. Huthnance, J. Rougier, and D. B. Stephenson, 2012: Quantifying future climate change. Nat. Climate Change, 2, 403409, doi:10.1038/nclimate1414.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke, 2013: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341344, doi:10.1038/nature11882.

    • Search Google Scholar
    • Export Citation
  • Davey, M. K., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18, 403420, doi:10.1007/s00382-001-0188-6.

    • Search Google Scholar
    • Export Citation
  • Du, Y., L. Yang, and S.-P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315322, doi:10.1175/2010JCLI3890.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., W. Cai, and Y. Wu, 2013: A new type of the Indian Ocean dipole since the mid-1970s. J. Climate, 26, 959972, doi:10.1175/JCLI-D-12-00047.1.

    • Search Google Scholar
    • Export Citation
  • Emmanuel, S., 2000: Impact to lung health of haze from forest fires: The Singapore experience. Respirology, 5, 175182, doi:10.1046/j.1440-1843.2000.00247.x.

    • Search Google Scholar
    • Export Citation
  • Frankenberg, E., D. McKee, and D. Thomas, 2005: Health consequences of forest fires in Indonesia. Demography, 42, 109129, doi:10.1353/dem.2005.0004.

    • Search Google Scholar
    • Export Citation
  • Guan, Z., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, doi:10.1029/2002GL016831.

    • Search Google Scholar
    • Export Citation
  • Hashizume, M., L. F. Chaves, and N. Minakawa, 2012: Indian Ocean dipole drives malaria resurgence in East African highlands. Sci. Rep., 2, 269, doi:10.1038/srep00269.

    • Search Google Scholar
    • Export Citation
  • Hua, L., Y. Yu, and D.-Z. Sun, 2015: A further study of ENSO rectification: Results from an OGCM with a seasonal cycle. J. Climate, 28, 13621382, doi:10.1175/JCLI-D-14-00404.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., and J. Ying, 2015: A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J. Climate, 28, 47064723, doi:10.1175/JCLI-D-14-00833.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., S.-P. Xie, K. Hu, G. Huang, and R. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, doi:10.1038/ngeo1792.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. M. Frierson, 2013: Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, doi:10.1073/pnas.1213302110.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J. Climate, 13, 42874309, doi:10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, T., D. E. Waliser, J.-L. F. Li, F. W. Landerer, and M. M. Gierach, 2013: Evaluation of CMIP3 and CMIP5 wind stress climatology using satellite measurements and atmospheric reanalysis products. J. Climate, 26, 58105826, doi:10.1175/JCLI-D-12-00591.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2012: Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys. Res. Lett., 39, L22703, doi:10.1029/2012GL053777.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Du, H. Xu, and B. Ren, 2015a: An intermodel approach to identify the source of excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational datasets. J. Climate, 28, 76307640, doi:10.1175/JCLI-D-15-0168.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2015b: Climate model errors over the South Indian Ocean thermocline dome and their effect on the basin mode of interannual variability. J. Climate, 28, 30933098, doi:10.1175/JCLI-D-14-00810.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2015c: Monsoon-induced biases of climate models over the tropical Indian Ocean. J. Climate, 28, 30583072, doi:10.1175/JCLI-D-14-00740.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, Y. Du, and Y. Luo, 2016: Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: The warming pattern in CMIP5 multi-model ensemble. Climate Dyn., doi:10.1007/s00382-016-3043-5, in press.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Search Google Scholar
    • Export Citation
  • Liu, L., S.-P. Xie, X.-T. Zheng, T. Li, Y. Du, G. Huang, and W.-D. Yu, 2014: Indian Ocean variability in the CMIP5 multi-model ensemble: The zonal dipole mode. Climate Dyn., 43, 17151730, doi:10.1007/s00382-013-2000-9.

    • Search Google Scholar
    • Export Citation
  • Ma, J., and S.-P. Xie, 2013: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Climate, 26, 24822501, doi:10.1175/JCLI-D-12-00283.1.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838, doi:10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. P. McCreary, and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res., 105, 32953306, doi:10.1029/1999JC900294.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., L. Ruokolainen, and J. Ylhäisi, 2010: Weighting of model results for improving best estimates of climate change. Climate Dyn., 35, 407422, doi:10.1007/s00382-009-0659-8.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rougier, J., 2007: Probabilistic inference for future climate using an ensemble of climate model evaluations. Climatic Change, 81, 247264, doi:10.1007/s10584-006-9156-9.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Shiogama, H., S. Emori, N. Hanasaki, M. Abe, Y. Masutomi, K. Takahashi, and T. Nozawa, 2011: Observational constraints indicate risk of drying in the Amazon basin. Nat. Commun., 2, 253, doi:10.1038/ncomms1252.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., A. Noda, and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249272, doi:10.2151/jmsj.80.249.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., T. Zhang, Y. Sun, and Y. Yu, 2014: Rectification of El Niño–Southern Oscillation into climate anomalies of decadal and longer time scales: Results from forced ocean GCM experiments. J. Climate, 27, 25452561, doi:10.1175/JCLI-D-13-00390.1.

    • Search Google Scholar
    • Export Citation
  • Sunyer, M. A., H. Madsen, D. Rosbjerg, and K. Arnbjerg-Nielsen, 2014: A Bayesian approach for uncertainty quantification of extreme precipitation projections including climate model interdependency and nonstationary bias. J. Climate, 27, 71137132, doi:10.1175/JCLI-D-13-00589.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., J. S. Ronald, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18, 15241540, doi:10.1175/JCLI3363.1.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, A. Timmermann, S. McGregor, T. Ogata, H. Kubota, and Y. M. Okumura, 2012: Regional patterns of tropical Indo-Pacific climate change: Evidence of the Walker circulation weakening. J. Climate, 25, 16891710, doi:10.1175/JCLI-D-11-00263.1.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., and Coauthors, 2011: Indian and Pacific Ocean influences on southeast Australian drought and soil moisture. J. Climate, 24, 13131336, doi:10.1175/2010JCLI3475.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007b: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C. Z., L. P. Zhang, S. K. Lee, L. X. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, doi:10.1038/nclimate2118.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, doi:10.1038/43848.

    • Search Google Scholar
    • Export Citation
  • Weller, E., and W. Cai, 2013: Realism of the Indian Ocean dipole in CMIP5 models: The implications for climate projections. J. Climate, 26, 66496659, doi:10.1175/JCLI-D-12-00807.1.

    • Search Google Scholar
    • Export Citation
  • Whetton, P., I. Macadam, J. Bathols, and J. O’Grady, 2007: Assessment of the use of current climate patterns to evaluate regional enhanced greenhouse response patterns of climate models. Geophys. Res. Lett., 34, L14701, doi:10.1029/2007GL030025.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, doi:10.1034/j.1600-0870.1994.t01-1-00001.x.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864878, doi:10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, doi:10.1038/nclimate2689.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., Y.-G. Ham, and J.-Y. Lee, 2012: Changes in the tropical Pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J. Climate, 25, 77647771, doi:10.1175/JCLI-D-12-00304.1.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., and Y. N. Takayabu, 2009: Multi-model projection of global warming impact on tropical cyclone genesis frequency over the western North Pacific. J. Meteor. Soc. Japan, 87, 525538, doi:10.2151/jmsj.87.525.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, G. A. Vecchi, Q. Liu, and J. Hafner, 2010: Indian Ocean dipole response to global warming: Analysis of ocean–atmospheric feedbacks in a coupled model. J. Climate, 23, 12401253, doi:10.1175/2009JCLI3326.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, Y. Du, L. Liu, G. Huang, and Q. Liu, 2013: Indian Ocean Dipole response to global warming in the CMIP5 multi-model ensemble. J. Climate, 26, 60676080, doi:10.1175/JCLI-D-12-00638.1.

    • Search Google Scholar
    • Export Citation
  • Zubair, L., S. A. Rao, and T. Yamagata, 2003: Modulation of Sri Lankan Maha rainfall by the Indian Ocean dipole. Geophys. Res. Lett., 30, 1063, doi:10.1029/2002GL015639.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2155 1124 89
PDF Downloads 877 96 9