Early Summer Response of the East Asian Summer Monsoon to Atmospheric CO2 Forcing and Subsequent Sea Surface Warming

Jinqiang Chen California Institute of Technology, Pasadena, California

Search for other papers by Jinqiang Chen in
Current site
Google Scholar
PubMed
Close
and
Simona Bordoni California Institute of Technology, Pasadena, California

Search for other papers by Simona Bordoni in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The early summer regional climate change of the East Asian summer monsoon (EASM) is investigated in the phase 5 of the Coupled Model Intercomparison Project (CMIP5) archive. In the greenhouse gas–forced scenario, reduction of radiative cooling and increase in continental surface temperature occur much more rapidly than changes in sea surface temperatures (SSTs). Without changes in SSTs, the early summer rainfall in the monsoon region decreases (increases) over ocean (land) in most models. On longer time scales, as SSTs increase, rainfall changes are opposite. The total response to atmospheric CO2 forcing and subsequent SST warming is a large (modest) increase in rainfall over ocean (land) in the EASM region. Dynamic changes, in spite of significant contributions from the thermodynamic component, play an important role in setting up the spatial pattern of precipitation changes. Early summer rainfall anomalies over east China are a direct consequence of local land–sea contrast, while changes in the large-scale oceanic rainfall band are closely associated with the displacement of the larger-scale North Pacific subtropical high (NPSH). Ad hoc numerical simulations with the AM2.1 general circulation model show that topography and SST patterns play an important role in early summer rainfall changes in the EASM region.

Current affiliation: Harvard Kennedy School of Government, Cambridge, Massachusetts.

Corresponding author address: Jinqiang Chen, Harvard Kennedy School of Government, 79 John F. Kennedy St., Cambridge, MA 02138. E-mail: jinqiang_chen@hks.harvard.edu

Abstract

The early summer regional climate change of the East Asian summer monsoon (EASM) is investigated in the phase 5 of the Coupled Model Intercomparison Project (CMIP5) archive. In the greenhouse gas–forced scenario, reduction of radiative cooling and increase in continental surface temperature occur much more rapidly than changes in sea surface temperatures (SSTs). Without changes in SSTs, the early summer rainfall in the monsoon region decreases (increases) over ocean (land) in most models. On longer time scales, as SSTs increase, rainfall changes are opposite. The total response to atmospheric CO2 forcing and subsequent SST warming is a large (modest) increase in rainfall over ocean (land) in the EASM region. Dynamic changes, in spite of significant contributions from the thermodynamic component, play an important role in setting up the spatial pattern of precipitation changes. Early summer rainfall anomalies over east China are a direct consequence of local land–sea contrast, while changes in the large-scale oceanic rainfall band are closely associated with the displacement of the larger-scale North Pacific subtropical high (NPSH). Ad hoc numerical simulations with the AM2.1 general circulation model show that topography and SST patterns play an important role in early summer rainfall changes in the EASM region.

Current affiliation: Harvard Kennedy School of Government, Cambridge, Massachusetts.

Corresponding author address: Jinqiang Chen, Harvard Kennedy School of Government, 79 John F. Kennedy St., Cambridge, MA 02138. E-mail: jinqiang_chen@hks.harvard.edu
Save
  • Anderson, J., and Coauthors, 2004: The new GFDL Global Atmosphere and Land Model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, doi:10.1038/ngeo1799.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and S. Bordoni, 2014: Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: An energetic perspective. J. Climate, 27, 30523072, doi:10.1175/JCLI-D-13-00479.1.

    • Search Google Scholar
    • Export Citation
  • He, C., and T. Zhou, 2015: Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian Ocean–tropical western Pacific SST gradient. J. Climate, 28, 365380, doi:10.1175/JCLI-D-13-00494.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Kamae, Y., M. Watanabe, M. Kimoto, and H. Shiogama, 2014: Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate—Part II: Importance of CO2-induced continental warming. Climate Dyn., 43, 25692583, doi:10.1007/s00382-014-2146-0.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., and T. Uchiyama, 2006: Changes in onset and withdrawal of the East Asian summer rainy season by multi-model global warming experiments. J. Meteor. Soc. Japan, 84, 247258, doi:10.2151/jmsj.84.247.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., S. Yukimoto, A. Noda, and T. Motoi, 1997: Simulated changes in the Asian summer monsoon at times of increased atmospheric CO2. J. Meteor. Soc. Japan, 75, 10191031.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., H. Endo, K. Krishna Kumar, I. F. Cavalcanti, P. Goswami, and T. Zhou, 2013: Monsoons in a changing world: A regional perspective in a global context. J. Geophys. Res. Atmos., 118, 30533065, doi:10.1002/jgrd.50258.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F., C. Wilson, and W. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293322, doi:10.1002/qj.49711347517.

    • Search Google Scholar
    • Export Citation
  • Molnar, P., W. Boos, and D. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38, 77102, doi:10.1146/annurev-earth-040809-152456.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., R. P. Allan, M. P. Byrne, and M. Previdi, 2012: Energetic constraints on precipitation under climate change. Surv. Geophys., 33, 585608, doi:10.1007/s10712-011-9159-6.

    • Search Google Scholar
    • Export Citation
  • Qu, X., G. Huang, and W. Zhou, 2014: Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations. Theor. Appl. Climatol., 117, 123131, doi:10.1007/s00704-013-0995-9.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S. Xie, 2010: Large-scale dynamics of the meiyu–baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134, doi:10.1175/2009JCLI3128.1.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., J. Ok, J.-H. Son, and D.-H. Cha, 2013: Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 76627675, doi:10.1175/JCLI-D-12-00694.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T., and A. Voigt, 2015: Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci., 8, 560566, doi:10.1038/ngeo2449.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, R. E. Livezey, and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9, 14031420, doi:10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014: The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air–sea coupling improve the simulations? J. Climate, 27, 87618777, doi:10.1175/JCLI-D-14-00396.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Terao, T., and T. Kubota, 2005: East–west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon. Geophys. Res. Lett., 32, L15706, doi:10.1029/2005GL023010.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, doi:10.1175/2008JCLI2710.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, doi:10.1175/2010JCLI3300.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, doi:10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., S. Yang, M. Jian, and J. Chen, 2011a: Relative controls of Asian–Pacific summer climate by Asian land and tropical–North Pacific sea surface temperature. J. Climate, 24, 41654188, doi:10.1175/2011JCLI3915.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., S. Yang, H. Wang, and Q. Zhang, 2011b: Interdecadal relationships between the Asian–Pacific Oscillation and summer climate anomalies over Asia, North Pacific, and North America during a recent 100 years. J. Climate, 24, 47934799, doi:10.1175/JCLI-D-11-00054.1.

    • Search Google Scholar
    • Export Citation
  • Zou, L., and T. Zhou, 2013: Near future (2016–40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM. Adv. Atmos. Sci., 30, 806818, doi:10.1007/s00376-013-2209-x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1479 325 26
PDF Downloads 711 95 2