Benefits of CMIP5 Multimodel Ensemble in Reconstructing Historical Ocean Subsurface Temperature Variations

Lijing Cheng International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Lijing Cheng in
Current site
Google Scholar
PubMed
Close
and
Jiang Zhu International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jiang Zhu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A complete map of the ocean subsurface temperature is essential for monitoring aspects of climate change such as the ocean heat content (OHC) and sea level changes and for understanding the dynamics of the ocean/climate variation. However, global observations have not been available in the past, so a mapping strategy is required to fill the data gaps. In this study, an advanced mapping method is proposed to reconstruct the historical ocean subsurface (0–700 m) temperature field from 1940 to 2014 by using ensemble optimal interpolation with a dynamic ensemble (EnOI-DE) approach and a multimodel ensemble of phase 5 of the Coupled Model Intercomparison Project (CMIP5) historical and representative concentration pathway 4.5 simulations. The reconstructed field is a combination of two parts: a first guess provided by the ensemble mean of CMIP5 models and an adjustment by minimizing the analysis error with the assistance of error covariance determined by the CMIP5 models. The uncertainty of the field can also be assessed. This new approach was evaluated using a series of tests, including subsample tests by using data from the Argo period, idealized tests by specifying a truth field from the models, and withdrawn-data tests by removing 20% of the observations for validation. In addition, the authors showed that the ocean mean state, long-term trends, and interannual and decadal variability are all well represented. Furthermore, the most significant benefit of this method is to provide an improved estimate of the long-term historical OHC changes since 1940, which have important implications for Earth’s energy budget.

Denotes Open Access content.

Corresponding author address: Jiang Zhu, ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 40, Huayanli, Qijiahuozi, Chaoyang, Beijing 100029, China. E-mail: jzhu@mail.iap.ac.cn

Abstract

A complete map of the ocean subsurface temperature is essential for monitoring aspects of climate change such as the ocean heat content (OHC) and sea level changes and for understanding the dynamics of the ocean/climate variation. However, global observations have not been available in the past, so a mapping strategy is required to fill the data gaps. In this study, an advanced mapping method is proposed to reconstruct the historical ocean subsurface (0–700 m) temperature field from 1940 to 2014 by using ensemble optimal interpolation with a dynamic ensemble (EnOI-DE) approach and a multimodel ensemble of phase 5 of the Coupled Model Intercomparison Project (CMIP5) historical and representative concentration pathway 4.5 simulations. The reconstructed field is a combination of two parts: a first guess provided by the ensemble mean of CMIP5 models and an adjustment by minimizing the analysis error with the assistance of error covariance determined by the CMIP5 models. The uncertainty of the field can also be assessed. This new approach was evaluated using a series of tests, including subsample tests by using data from the Argo period, idealized tests by specifying a truth field from the models, and withdrawn-data tests by removing 20% of the observations for validation. In addition, the authors showed that the ocean mean state, long-term trends, and interannual and decadal variability are all well represented. Furthermore, the most significant benefit of this method is to provide an improved estimate of the long-term historical OHC changes since 1940, which have important implications for Earth’s energy budget.

Denotes Open Access content.

Corresponding author address: Jiang Zhu, ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 40, Huayanli, Qijiahuozi, Chaoyang, Beijing 100029, China. E-mail: jzhu@mail.iap.ac.cn
Save
  • Abraham, J. P., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450483, doi:10.1002/rog.20022.

    • Search Google Scholar
    • Export Citation
  • Abraham, J. P., and Coauthors, 2014: Modeling and numerical simulation of the forces acting on a sphere during early-water entry. Ocean Eng., 76, 19, doi:10.1016/j.oceaneng.2013.11.015.

    • Search Google Scholar
    • Export Citation
  • AchutaRao, K. M., and Coauthors, 2007: Simulated and observed variability in ocean temperature and heat content. Proc. Natl. Acad. Sci. USA, 104, 10 76810 773, doi:10.1073/pnas.0611375104.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., C. Liu, N. G. Loeb, M. D. Palmer, M. Roberts, D. Smith, and P. L. Vidale, 2014: Changes in global net radiative imbalance 1985–2012. Geophys. Res. Lett., 41, 55885597, doi:10.1002/2014GL060962.

    • Search Google Scholar
    • Export Citation
  • Alory, G., S. Wijffels, and G. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34, L02606, doi:10.1029/2006GL028044.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, doi:10.1002/grl.50382.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, doi:10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2013: World Ocean Database 2013. S. Levitus, Ed., NOAA Atlas NESDIS 72, 209 pp. [Available online at http://data.nodc.noaa.gov/woa/WOD13/DOC/wod13_intro.pdf.]

  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and A. Santorelli, 2008: Global decadal upper-ocean heat content as viewed in nine analyses. J. Climate, 21, 60156035, doi:10.1175/2008JCLI2489.1.

    • Search Google Scholar
    • Export Citation
  • Chang, Y.-S., S. Zhang, A. Rosati, T. L. Delworth, and W. F. Stern, 2013: An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Climate Dyn., 40, 775803, doi:10.1007/s00382-012-1412-2.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and J. Zhu, 2014a: Artifacts in variations of ocean heat content induced by the observation system changes. Geophys. Res. Lett., 41, 72767283, doi:10.1002/2014GL061881.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and J. Zhu, 2014b: Uncertainties of the ocean heat content estimation induced by insufficient vertical resolution of historical ocean subsurface observations. J. Atmos. Oceanic Technol., 31, 13831396, doi:10.1175/JTECH-D-13-00220.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and J. Zhu, 2015: Influences of the choice of climatology on ocean heat content estimation. J. Atmos. Oceanic Technol., 32, 388394, doi:10.1175/JTECH-D-14-00169.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., J. Zhu, R. Cowley, T. Boyer, and S. Wijffels, 2014: Time, probe type and temperature variable bias corrections to historical expendable bathythermograph observations. J. Atmos. Oceanic Technol., 31, 17931825, doi:10.1175/JTECH-D-13-00197.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., F. Zheng, and J. Zhu, 2015a: Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep., 5, 14346, doi:10.1038/srep14346.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., J. Zhu, and J. Abraham, 2015b: Global upper ocean heat content estimation: Recent progress and the remaining challenges. Atmos. Oceanic Sci. Lett., 8, 333338, doi:10.3878/AOSL20150031.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and Coauthors, 2016: XBT Science: Assessment of instrumental biases and errors. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00031.1, in press.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and N. J. White, 2011: Sea-level rise from the late 19th to the early 21st century. Surv. Geophys., 32, 585602, doi:10.1007/s10712-011-9119-1.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and Coauthors, 2011: Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794.

    • Search Google Scholar
    • Export Citation
  • Cowley, R., S. Wijffels, L. Cheng, T. Boyer, and S. Kizu, 2013: Biases in expendable bathythermograph data: A new view based on historical side-by-side comparisons. J. Atmos. Oceanic Technol., 30, 11951225, doi:10.1175/JTECH-D-12-00127.1.

    • Search Google Scholar
    • Export Citation
  • Cowtan, K., and R. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, doi:10.1002/qj.2297.

    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., J. A. Church, N. J. White, P. J. Gleckler, S. E. Wijffels, P. M. Barker, and J. R. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093, doi:10.1038/nature07080.

    • Search Google Scholar
    • Export Citation
  • Durack, P., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, doi:10.1126/science.1212222.

    • Search Google Scholar
    • Export Citation
  • Durack, P., P. J. Gleckler, F. Landerer, and K. E. Taylor, 2014a: Quantifying underestimates of long-term upper-ocean warming. Nat. Climate Change, 4, 9991005, doi:10.1038/nclimate2389.

    • Search Google Scholar
    • Export Citation
  • Durack, P., S. Wijffels, and P. J. Gleckler, 2014b: Long-term sea-level change revisited: The role of salinity. Environ. Res. Lett., 9, 114017, doi:10.1088/1748-9326/9/11/114017.

    • Search Google Scholar
    • Export Citation
  • England, H. M., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential Data Assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2004: Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn., 54, 539560, doi:10.1007/s10236-004-0099-2.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 1643, doi:10.1029/2001GL014201.

    • Search Google Scholar
    • Export Citation
  • Freeland, H., and Coauthors, 2010: Argo—A decade of progress. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Vol. 2, J. Hall et al., Eds., ESA Publication WPP-306, 14 pp., doi:10.5270/OceanObs09.cwp.32.

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2008: Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Climate, 21, 47494765, doi:10.1175/2008JCLI2131.1.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., and Coauthors, 2012: Human-induced global ocean warming on multidecadal timescales. Nat. Climate Change, 2, 524529, doi:10.1038/nclimate1553.

    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, doi:10.1002/2013JC009067.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287299, doi:10.1007/s10872-009-0027-7.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., M. Kimoto, and M. Kachi, 2003: Historical ocean subsurface temperature analysis with error estimates. Mon. Wea. Rev., 131, 5173, doi:10.1175/1520-0493(2003)131<0051:HOSTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filter and prediction problems. J. Basic Eng., 82, 3545, doi:10.1115/1.3662552.

  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties J. Geophys. Res., 116, D14103, doi:10.1029/2010JD015218.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S. P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp. [Available online at http://data.nodc.noaa.gov/woa/WOA13/DOC/WOA13_vol1.pdf.]

  • Lyman, J. M., and G. C. Johnson, 2008: Estimating annual global upper-ocean heat content anomalies despite irregular in situ ocean sampling. J. Climate, 21, 56295641, doi:10.1175/2008JCLI2259.1.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., and G. C. Johnson, 2014: Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Climate, 27, 19451957, doi:10.1175/JCLI-D-12-00752.1.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., S. A. Good, V. V. Gouretski, M. Ishii, G. C. Johnson, M. D. Palmer, D. M. Smith, and J. K. Willis, 2010: Robust warming of the global upper ocean. Nature, 465, 334337, doi:10.1038/nature09043.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. Y. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, doi:10.1038/nclimate1229.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, J. M. Arblaster, J. Y. Fasullo, and K. E. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J. Climate, 26, 72987310, doi:10.1175/JCLI-D-12-00548.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., and K. Haines, 2009: Estimating oceanic heat content change using isotherms. J. Climate, 22, 49534969, doi:10.1175/2009JCLI2823.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., and D. J. McNeall, 2014: Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ. Res. Lett., 9, 034016, doi:10.1088/1748-9326/9/3/034016.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., K. Haines, S. F. B. Tett, and T. J. Ansell, 2007: Isolating the signal of ocean global warming. Geophys. Res. Lett., 34, L23610, doi:10.1029/2007GL031712.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., D. McNeall, and N. Dunstone, 2011: Importance of the deep ocean for estimating decadal changes in Earth’s radiation balance. Geophys. Res. Lett., 38, L13707, doi:10.1029/2011GL047835.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., and Coauthors, 2016: Ocean heat content variability and change in an ensemble of ocean reanalyses. Climate Dyn., doi:10.1007/s00382-015-2801-0, in press.

    • Search Google Scholar
    • Export Citation
  • Purkey, S., and G. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, doi:10.1175/2010JCLI3682.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 255–315.

  • Riser, S. C., and Coauthors, 2016: Fifteen years of ocean observations with the global Argo array. Nat. Climate Change, 6, 145153, doi:10.1038/nclimate2872.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, doi:10.1016/j.pocean.2009.03.004.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2011: The global ocean imprint of ENSO. Geophys. Res. Lett., 38, L13606, doi:10.1029/2011GL047992.

  • Roemmich, D., W. J. Gould, and J. Gilson, 2012: 135 years of global ocean warming between the Challenger expedition and the Argo Programme. Nat. Climate Change, 2, 425428, doi:10.1038/nclimate1461.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, doi:10.1038/nclimate2513.

    • Search Google Scholar
    • Export Citation
  • Sakov, P., and P. R. Oke, 2008a: A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters. Tellus, 60A, 361371, doi:10.1111/j.1600-0870.2007.00299.x.

    • Search Google Scholar
    • Export Citation
  • Sakov, P., and P. R. Oke, 2008b: Implications of the form of the ensemble transformation in the ensemble square root filters. Mon. Wea. Rev., 136, 10421053, doi:10.1175/2007MWR2021.1.

    • Search Google Scholar
    • Export Citation
  • Schwalbach, D. S., T. Shepard, S. Kane, D. Siglin, T. Harrington, and J. P. Abraham, 2014: Effect of impact velocity and mass ratio during vertical sphere water entry. Dev. Appl. Oceanic Eng., 3, 5562.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., N. Jourdain, J. Brown, and D. Monselesan, 2013: Climate drift in the CMIP5 models. J. Climate, 26, 85978615, doi:10.1175/JCLI-D-12-00521.1.

    • Search Google Scholar
    • Export Citation
  • Shepard, T., J. P. Abraham, D. S. Schwalbach, S. Kane, D. Sigling, and T. Harrington, 2014: Velocity and density effect on impact force during water entry of spheres. J. Geophys. Remote Sens., 3, 129, doi:10.4172/2169-0049.1000129.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and J. M. Murphy, 2007: An objective ocean temperature and salinity analysis using covariances from a global climate model. J. Geophys. Res., 112, C02022, doi:10.1029/2005JC003172.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2015: Earth’s energy imbalance since 1960 in observations and CMIP5 models. Geophys. Res. Lett., 42, 12051213, doi:10.1002/2014GL062669.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2015: Has there been a hiatus? Science, 349, 691692, doi:10.1126/science.aac9225.

  • Trenberth, K. E., and J. T. Fasullo, 2012: Tracking Earth’s energy: From El Niño to global warming. Surv. Geophys., 33, 413426, doi:10.1007/s10712-011-9150-2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, doi:10.1002/2013EF000165.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and M. Balmaseda, 2014a: Earth’s energy imbalance. J. Climate, 27, 31293144, doi:10.1175/JCLI-D-13-00294.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, G. Branstator, and A. S. Phillips, 2014b: Seasonal aspects of the recent pause in surface warming. Nat. Climate Change, 4, 911916, doi:10.1038/nclimate2341.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., J.-B. Sallée, D. Chambers, P. Y. Le Traon, C. Cabanes, F. Gaillard, S. Speich, and M. Hamon, 2014: Monitoring ocean heat content from the current generation of global ocean observing systems. Ocean Sci., 10, 547557, doi:10.5194/os-10-547-2014.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and Coauthors, 2016: An imperative to monitor Earth’s energy imbalance. Nat. Climate Change, 6, 138144, doi:10.1038/nclimate2876.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., D. Roemmich, and B. Cornuelle, 2004: Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res., 109, C12036, doi:10.1029/2003JC002260.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161166, doi:10.1038/nclimate1353.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., B. Huang, Z. Hu, A. Kumar, C. Wen, D. Behringer, and S. Nadiga, 2011: An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Climate Dyn., 37, 25112539, doi:10.1007/s00382-010-0954-4.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., and Coauthors, 2012: A comparative analysis of upper ocean heat content variability from an ensemble of operational ocean reanalyses. J. Climate, 25, 69056929, doi:10.1175/JCLI-D-11-00542.1.

    • Search Google Scholar
    • Export Citation
  • Zang, X. Y., and C. Wunsch, 2001: Spectral description of low-frequency oceanic variability. J. Phys. Oceanogr., 31, 30733095, doi:10.1175/1520-0485(2001)031<3073:SDOLFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallance, and D. S. Battisti, 1997: ENSO-like interdecadal variability. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4612 1363 54
PDF Downloads 1751 379 29