Progressive Midlatitude Afforestation: Impacts on Clouds, Global Energy Transport, and Precipitation

Marysa M. Laguë Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Marysa M. Laguë in
Current site
Google Scholar
PubMed
Close
and
Abigail L. S. Swann Department of Atmospheric Sciences, and Department of Biology, University of Washington, Seattle, Washington

Search for other papers by Abigail L. S. Swann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Vegetation influences the atmosphere in complex and nonlinear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, the response of climate to linearly increasing the area of forest cover in the northern midlatitudes is systematically evaluated. This study shows that the magnitude of afforestation of the northern midlatitudes determines the local climate response in a nonlinear fashion, and the authors identify a threshold in vegetation-induced cloud feedbacks—a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. This study shows how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased. The results highlight the importance of considering both local and remote climate effects of large-scale vegetation change and explore the scaling relationship between changes in vegetation cover and resulting climate impacts.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0748.s1.

Corresponding author address: Marysa M. Laguë, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: mlague@uw.edu

Abstract

Vegetation influences the atmosphere in complex and nonlinear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, the response of climate to linearly increasing the area of forest cover in the northern midlatitudes is systematically evaluated. This study shows that the magnitude of afforestation of the northern midlatitudes determines the local climate response in a nonlinear fashion, and the authors identify a threshold in vegetation-induced cloud feedbacks—a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. This study shows how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased. The results highlight the importance of considering both local and remote climate effects of large-scale vegetation change and explore the scaling relationship between changes in vegetation cover and resulting climate impacts.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0748.s1.

Corresponding author address: Marysa M. Laguë, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: mlague@uw.edu

Supplementary Materials

    • Supplemental Materials (PDF 13.68 MB)
Save
  • Bala, G., K. Caldeira, M. Wickett, T. J. Phillips, D. B. Lobell, C. Delire, and A. Mirin, 2007: Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA, 104, 65506555, doi:10.1073/pnas.0608998104.

    • Search Google Scholar
    • Export Citation
  • Bathiany, S., M. Claussen, V. Brovkin, T. Raddatz, and V. Gayler, 2010: Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI Earth System Model. Biogeosciences, 7, 13831399, doi:10.5194/bg-7-1383-2010.

    • Search Google Scholar
    • Export Citation
  • Betts, R., 1999: Self-beneficial effects of vegetation on climate in an ocean-atmosphere general circulation model. Geophys. Res. Lett., 26, 14571460, doi:10.1029/1999GL900283.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1999: Frost followed the plow: Impacts of deforestation on the climate of the United States. Ecol. Appl., 9, 13051315, doi:10.1890/1051-0761(1999)009[1305:FFTPIO]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2001: Observational evidence for reduction of daily maximum temperature by croplands in the midwest United States. J. Climate, 14, 24302442, doi:10.1175/1520-0442(2001)014<2430:OEFROD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2002: Ecological Climatology: Concepts and Applications. Cambridge University Press, 678 pp.

  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, doi:10.1126/science.1155121.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., D. Pollard, and S. L. Thompson, 1992: Effects of boreal forest vegetation on global climate. Nature, 359, 716718, doi:10.1038/359716a0.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Blad, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Brovkin, V., A. Ganopolski, M. Claussen, C. Kubatzki, and V. Petoukhov, 1999: Modelling climate response to historical land cover change. Global Ecol. Biogeogr., 8, 509517, doi:10.1046/j.1365-2699.1999.00169.x.

    • Search Google Scholar
    • Export Citation
  • Charney, J., P. H. Stone, and W. J. Quirk, 1975: Drought in the Sahara: A biogeophysical feedback mechanism. Science, 187, 434435, doi:10.1126/science.187.4175.434.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, doi:10.1007/s00382-005-0040-5.

    • Search Google Scholar
    • Export Citation
  • Claussen, M., V. Brovkin, and A. Ganopolski, 2001: Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys. Res. Lett., 28, 10111014, doi:10.1029/2000GL012471.

    • Search Google Scholar
    • Export Citation
  • De Noblet-Ducoudré, N., and Coauthors, 2012: Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. J. Climate, 25, 32613281, doi:10.1175/JCLI-D-11-00338.1.

    • Search Google Scholar
    • Export Citation
  • Devaraju, N., G. Bala, and A. Modak, 2015a: Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proc. Natl. Acad. Sci. USA, 112, 32573262, doi:10.1073/pnas.1423439112.

    • Search Google Scholar
    • Export Citation
  • Devaraju, N., G. Bala, and R. Nemani, 2015b: Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales. Plant Cell Environ., 38, 19311946, doi:10.1111/pce.12488.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. Mcgee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the last glacial maximum. J. Climate, 26, 35973618, doi:10.1175/JCLI-D-12-00467.1.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., T. R. Knutson, and P. C. D. Milly, 2006: Weak simulated extratropical responses to complete tropical deforestation. J. Climate, 19, 28352850, doi:10.1175/JCLI3737.1.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., E. Shevliakova, P. C. D. Milly, and R. J. Stouffer, 2007: Modeled impact of anthropogenic land cover change on climate. J. Climate, 20, 36213634, doi:10.1175/JCLI4185.1.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., J. E. Kutzbach, M. T. Coe, and S. Levis, 1994: Feedbacks between climate and boreal forests during the Holocene epoch. Nature, 371, 5254, doi:10.1038/371052a0.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., A. Kleidon, and F. Lunkeit, 1999: A green planet versus a desert world: Estimating the effect of vegetation extremes on the atmosphere. J. Climate, 12, 31563163, doi:10.1175/1520-0442(1999)012<3156:AGPVAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Friedl, M., and Coauthors, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287302, doi:10.1016/S0034-4257(02)00078-0.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, doi:10.1175/JCLI-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Garwood, R. W., 1979: Air-sea interaction and dynamics of the surface mixed layer. Rev. Geophys., 17, 15071524, doi:10.1029/RG017i007p01507.

    • Search Google Scholar
    • Export Citation
  • Gibbard, S., K. Caldeira, G. Bala, T. J. Phillips, and M. Wickett, 2005: Climate effects of global land cover change. Geophys. Res. Lett., 32, L23705, doi:10.1029/2005GL024550.

    • Search Google Scholar
    • Export Citation
  • Hadley, G., 1735: Concerning the cause of the general trade-winds. Philos. Trans. Roy. Soc. London, 39, 5862, doi:10.1098/rstl.1735.0014.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1979: Numerical models of ocean circulation and climate interaction. Rev. Geophys., 17, 14941507, doi:10.1029/RG017i007p01494.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D., 1994: Global Physical Climatology. International Geophysics Series, Vol. 56, Academic Press, 411 pp.

  • Hunke, E. C., and Coauthors, 2010: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual version 4.1. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp. [Available online at http://csdms.colorado.edu/w/images/CICE_documentation_and_software_user's_manual.pdf.]

  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, doi:10.1175/2009JAS2924.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, doi:10.1175/JCLI-D-15-0358.1.

    • Search Google Scholar
    • Export Citation
  • Kleidon, A., K. Fraedrich, and M. Heimann, 2000: A green planet versus a desert world: Estimating the maximum effect of vegetation on the land surface climate. Climatic Change, 44, 471493, doi:10.1023/A:1005559518889.

    • Search Google Scholar
    • Export Citation
  • Koven, C. D., D. M. Lawrence, and W. J. Riley, 2015: Permafrost carbon–climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl. Acad. Sci. USA, 112, 37523757, doi:10.1073/pnas.1415123112.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1977: The seasonal excursion of the intertropical convergence zone. Mon. Wea. Rev., 105, 10521055, doi:10.1175/1520-0493(1977)105<1052:TSEOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, X., and Coauthors, 2011: Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479, 384387, doi:10.1038/nature10588.

    • Search Google Scholar
    • Export Citation
  • Li, Y., M. Zhao, S. Motesharrei, Q. Mu, E. Kalnay, and S. Li, 2015: Local cooling and warming effects of forests based on satellite observations. Nat. Commun., 6, 6603, doi:10.1038/ncomms7603.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., A. B. Gilliland, and I. Y. Fung, 2004: Mechanisms of convection-induced modulation of passive tracer interhemispheric transport interannual variability. J. Geophys. Res., 109, D13102, doi:10.1029/2003JD004306.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Oleson, K. W., G. B. Bonan, S. Levis, and M. Vertenstein, 2004: Effects of land use change on North American climate: Impact of surface datasets and model biogeophysics. Climate Dyn., 23, 117132, doi:10.1007/s00382-004-0426-9.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.2/clm/CLM45_Tech_Note.pdf.]

  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, doi:10.1029/2009GL039076.

    • Search Google Scholar
    • Export Citation
  • Pongratz, J., T. Raddatz, C. H. Reick, M. Esch, and M. Claussen, 2009: Radiative forcing from anthropogenic land cover change since AD 800. Geophys. Res. Lett., 36, 20042008, doi:10.1029/2008GL036394.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., A. T. Evan, C. Monfreda, and J. A. Foley, 2008: Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles, 22, GB1003, doi:10.1029/2007GB002952.

    • Search Google Scholar
    • Export Citation
  • Rotenberg, E., and D. Yakir, 2010: Contribution of semi-arid forests to the climate system. Science, 327, 451454, doi:10.1126/science.1179998.

    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., I. Y. Fung, S. Levis, G. B. Bonan, and S. C. Doney, 2010: Changes in arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl. Acad. Sci. USA, 107, 12951300, doi:10.1073/pnas.0913846107.

    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., I. Y. Fung, and J. C. H. Chiang, 2012: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. USA, 109, 712716, doi:10.1073/pnas.1116706108.

    • Search Google Scholar
    • Export Citation
  • Wickham, J. D., T. G. Wade, and K. H. Riitters, 2012: Comparison of cropland and forest surface temperatures across the conterminous United States. Agric. For. Meteor., 166167, 137143, doi:10.1016/j.agrformet.2012.07.002.

    • Search Google Scholar
    • Export Citation
  • Wickham, J. D., T. G. Wade, and K. H. Riitters, 2014: An isoline separating relatively warm from relatively cool wintertime forest surface temperatures for the southeastern United States. Global Planet. Change, 120, 4653, doi:10.1016/j.gloplacha.2014.05.012.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., J. Pitman, and T. Chase, 2001: The impact of land cover change on the atmospheric circulation. Climate Dyn., 17, 467477, doi:10.1007/PL00013740.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2592 1415 104
PDF Downloads 1084 221 18