Multiannual Ocean–Atmosphere Adjustments to Radiative Forcing

Maria A. A. Rugenstein Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Maria A. A. Rugenstein in
Current site
Google Scholar
PubMed
Close
,
Jonathan M. Gregory National Centre for Atmospheric Science–Climate, Department of Meteorology, University of Reading, Reading, and Met Office, Hadley Centre, Exeter, United Kingdom

Search for other papers by Jonathan M. Gregory in
Current site
Google Scholar
PubMed
Close
,
Nathalie Schaller Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Nathalie Schaller in
Current site
Google Scholar
PubMed
Close
,
Jan Sedláček Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Jan Sedláček in
Current site
Google Scholar
PubMed
Close
, and
Reto Knutti Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Reto Knutti in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In radiative forcing and climate feedback frameworks, the initial stratospheric and tropospheric adjustments to a forcing agent can be treated as part of the forcing and not as a feedback, as long as the average global surface temperature response is negligible. Here, a very large initial condition ensemble of the Community Earth System Model is used to analyze how the ocean shapes the fast response to radiative forcing. It is shown that not only the stratosphere and troposphere but also the ocean adjusts. This oceanic adjustment includes meridional ocean heat transport convergence anomalies, which are locally as large as the surface heat flux anomalies, and an increase of the Atlantic meridional overturning circulation. These oceanic adjustments set the lower boundary condition for the atmospheric response of the first few years, in particular, the shortwave cloud radiative effect. This cloud adjustment causes a nonlinear relationship between global energy imbalance and temperature. It proceeds with a characteristic time scale of a few years in response to the forcing rather than scaling nonlinearly with global mean temperature anomaly. It is proposed that even very short time scales are treated as a fully coupled problem and encourage other modeling groups to investigate whether our description also suits their models’ behavior. A definition of the forcing term (“virtual forcing”) including oceanic adjustment processes is introduced and serves as an interpretive idea for longer time scales.

Publisher’s Note: This article was revised on 2 August 2016 to correct formatting errors before and after the presentation of Eq. (2a) in section 3.

Corresponding author address: Maria Rugenstein, IAC, ETH Zürich, Universitätstrasse 16, Zürich, Switzerland. E-mail: maria.rugenstein@env.ethz.ch

Abstract

In radiative forcing and climate feedback frameworks, the initial stratospheric and tropospheric adjustments to a forcing agent can be treated as part of the forcing and not as a feedback, as long as the average global surface temperature response is negligible. Here, a very large initial condition ensemble of the Community Earth System Model is used to analyze how the ocean shapes the fast response to radiative forcing. It is shown that not only the stratosphere and troposphere but also the ocean adjusts. This oceanic adjustment includes meridional ocean heat transport convergence anomalies, which are locally as large as the surface heat flux anomalies, and an increase of the Atlantic meridional overturning circulation. These oceanic adjustments set the lower boundary condition for the atmospheric response of the first few years, in particular, the shortwave cloud radiative effect. This cloud adjustment causes a nonlinear relationship between global energy imbalance and temperature. It proceeds with a characteristic time scale of a few years in response to the forcing rather than scaling nonlinearly with global mean temperature anomaly. It is proposed that even very short time scales are treated as a fully coupled problem and encourage other modeling groups to investigate whether our description also suits their models’ behavior. A definition of the forcing term (“virtual forcing”) including oceanic adjustment processes is introduced and serves as an interpretive idea for longer time scales.

Publisher’s Note: This article was revised on 2 August 2016 to correct formatting errors before and after the presentation of Eq. (2a) in section 3.

Corresponding author address: Maria Rugenstein, IAC, ETH Zürich, Universitätstrasse 16, Zürich, Switzerland. E-mail: maria.rugenstein@env.ethz.ch
Save
  • Andrews, T., and P. M. Forster, 2008: CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations. Geophys. Res. Lett., 35, L04802, doi:10.1029/2007GL032273.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37, L14701, doi:10.1029/2010GL043991.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor, 2012: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys. Res. Lett., 39, L09712, doi:10.1029/2012GL051607.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, and M. J. Webb, 2015: The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Climate, 28, 16301648, doi:10.1175/JCLI-D-14-00545.1.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 45184534, doi:10.1175/JCLI-D-12-00544.1.

    • Search Google Scholar
    • Export Citation
  • Bala, G., K. Caldeira, and R. Nemani, 2010: Fast versus slow response in climate change: Implications for the global hydrological cycle. Climate Dyn., 35, 423434, doi:10.1007/s00382-009-0583-y.

    • Search Google Scholar
    • Export Citation
  • Block, K., and T. Mauritsen, 2013: Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2. J. Adv. Model. Earth Syst., 5, 676691, doi:10.1002/jame.20041.

    • Search Google Scholar
    • Export Citation
  • Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, doi:10.1038/ngeo1799.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2014: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, Cambridge University Press, 571–657.

  • Cai, W., and Coauthors, 2015: Increased frequency of extreme La Niña events under greenhouse warming. Nat. Climate Change, 5, 132137, doi:10.1038/nclimate2492.

    • Search Google Scholar
    • Export Citation
  • Caldeira, K., and N. P. Myhrvold, 2013: Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration. Environ. Res. Lett., 8, 034039, doi:10.1088/1748-9326/8/3/034039.

    • Search Google Scholar
    • Export Citation
  • Cao, L., G. Bala, and K. Caldeira, 2011: Why is there a short-term increase in global precipitation in response to diminished CO2 forcing? Geophys. Res. Lett., 38, L06703, doi:10.1029/2011GL046713.

    • Search Google Scholar
    • Export Citation
  • Cao, L., G. Bala, and K. Caldeira, 2012: Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environ. Res. Lett., 7, 034015, doi:10.1088/1748-9326/7/3/034015.

    • Search Google Scholar
    • Export Citation
  • Chadwick, R., P. Good, T. Andrews, and G. Martin, 2014: Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys. Res. Lett., 41, 610615, doi:10.1002/2013GL058504.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., and B. J. Soden, 2015a: An assessment of direct radiative forcing, radiative adjustments, and radiative feedbacks in coupled ocean–atmosphere models. J. Climate, 28, 41524170, doi:10.1175/JCLI-D-14-00436.1.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., and B. J. Soden, 2015b: An assessment of methods for computing radiative forcing in climate models. Environ. Res. Lett., 10, 074004, doi:10.1088/1748-9326/10/7/074004.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, doi:10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colman, R., and B. McAvaney, 2011: On tropospheric adjustment to forcing and climate feedbacks. Climate Dyn., 36, 16491658, doi:10.1007/s00382-011-1067-4.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, doi:10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Dong, B., J. M. Gregory, and R. T. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097, doi:10.1175/2009JCLI2652.1.

    • Search Google Scholar
    • Export Citation
  • Doutriaux-Boucher, M., M. J. Webb, J. M. Gregory, and O. Boucher, 2009: Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys. Res. Lett., 36, L02703, doi:10.1029/2008GL036273.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2014: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos., 118, 11391150, doi:10.1002/jgrd.50174.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., D. Saint-Martin, D. J. L. Olivié, A. Voldoire, G. Bellon, and S. Tytéca, 2013a: Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments. J. Climate, 26, 18411857, doi:10.1175/JCLI-D-12-00195.1.

    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., D. Saint-Martin, G. Bellon, A. Voldoire, D. J. L. Olivié, and S. Tytéca, 2013b: Transient climate response in a two-layer energy-balance model. Part II: Representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs. J. Climate, 26, 18591876, doi:10.1175/JCLI-D-12-00196.1.

    • Search Google Scholar
    • Export Citation
  • Good, P., J. M. Gregory, and J. A. Lowe, 2011: A step-response simple climate model to reconstruct and interpret AOGCM projections. Geophys. Res. Lett., 38, L01703, doi:10.1029/2010GL045208.

    • Search Google Scholar
    • Export Citation
  • Good, P., J. M. Gregory, J. A. Lowe, and T. Andrews, 2013: Abrupt CO2 experiments as tools for predicting and understanding CMIP5 representative concentration pathway projections. Climate Dyn., 40, 10411053, doi:10.1007/s00382-012-1410-4.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515, doi:10.1007/s003820000059.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and M. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21, 5871, doi:10.1175/2007JCLI1834.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32, L12703, doi:10.1029/2005GL023209.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., T. Andrews, and P. Good, 2015: The inconstancy of transient climate sensitivity under increasing CO2. Philos. Trans. Roy. Soc. London, 373A, 20140417, doi:10.1098/rsta.2014.0417.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014a: Southern Hemisphere cloud–dynamics biases in CMIP5 models and their implications for climate projections. J. Climate, 27, 60746092, doi:10.1175/JCLI-D-14-00113.1.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014b: The response of mid-latitude jets to increased CO2: Distinguishing the roles of sea surface temperature and direct radiative forcing. Geophys. Res. Lett., 41, 68636871, doi:10.1002/2014GL061638.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.

  • Hasselmann, K., R. Sausen, E. Maier-Reimer, and R. Voss, 1993: On the cold start problem in transient simulations with coupled atmosphere–ocean models. Climate Dyn., 9, 5361, doi:10.1007/BF00210008.

    • Search Google Scholar
    • Export Citation
  • Held, I., M. Winton, K. Takahashi, T. L. Delworth, F. Zeng, and G. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427, doi:10.1175/2009JCLI3466.1.

    • Search Google Scholar
    • Export Citation
  • Kamae, Y., and M. Watanabe, 2013: Tropospheric adjustment to increasing CO2: Its timescale and the role of land–sea contrast. Climate Dyn., 41, 30073024, doi:10.1007/s00382-012-1555-1.

    • Search Google Scholar
    • Export Citation
  • Kamae, Y., M. Watanabe, T. Ogura, M. Yoshimori, and H. Shiogama, 2015: Rapid adjustments of cloud and hydrological cycle to increasing CO2: A review. Current Climate Change Rep., 1, 103113, doi:10.1007/s40641-015-0007-5.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and M. A. A. Rugenstein, 2015: Feedbacks, climate sensitivity and the limits of linear models. Philos. Trans. Roy. Soc. London, 373A, 20140428, doi:10.1098/rsta.2015.0146.

    • Search Google Scholar
    • Export Citation
  • Kravitz, B., and Coauthors, 2013: An energetic perspective on hydrological cycle changes in the geoengineering model intercomparison project. J. Geophys. Res. Atmos., 118, 13 08713 102, doi:10.1002/2013JD020502.

    • Search Google Scholar
    • Export Citation
  • Lahellec, A., and J.-L. Dufresne, 2014: A formal analysis of the feedback concept in climate models. Part II: Tangent linear systems in GCMs. J. Atmos. Sci., 71, 33503375, doi:10.1175/JAS-D-13-0334.1.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., and N. E. Faull, 2007: Tropospheric adjustment: The response of two general circulation models to a change in insolation. Geophys. Res. Lett., 34, L03701, doi:10.1029/2006GL028124.

    • Search Google Scholar
    • Export Citation
  • Larson, E. J. L., and R. W. Portmann, 2015: A temporal kernel method to compute effective radiative forcing in CMIP5 transient simulations. J. Climate, 29, 14971509, doi:10.1175/JCLI-D-15-0577.1.

    • Search Google Scholar
    • Export Citation
  • Li, C., J.-S. von Storch, and J. Marotzke, 2013: Deep-ocean heat uptake and equilibrium climate response. Climate Dyn., 40, 10711086, doi:10.1007/s00382-012-1350-z.

    • Search Google Scholar
    • Export Citation
  • Long, M. C., K. Lindsay, S. Peacock, J. K. Moore, and S. C. Doney, 2013: Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J. Climate, 26, 67756800, doi:10.1175/JCLI-D-12-00184.1.

    • Search Google Scholar
    • Export Citation
  • Meraner, K., T. Mauritsen, and A. Voigt, 2013: Robust increase in equilibrium climate sensitivity under global warming. Geophys. Res. Lett., 40, 59445948, doi:10.1002/2013GL058118.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., 2015: Direct weakening of tropical circulations from masked CO2 radiative forcing. Proc. Natl. Acad. Sci. USA, 112, 13 16713 171, doi:10.1073/pnas.1508268112.

    • Search Google Scholar
    • Export Citation
  • Otto, A., and Coauthors, 2013: Energy budget constraints on climate response. Nat. Geosci., 6, 415416, doi:10.1038/ngeo1836.

  • Ringer, M. A., T. Andrews, and M. J. Webb, 2014: Global-mean radiative feedbacks and forcing in atmosphere-only and coupled atmosphere–ocean climate change experiments. Geophys. Res. Lett., 41, 40354042, doi:10.1002/2014GL060347.

    • Search Google Scholar
    • Export Citation
  • Rogelj, J., and Coauthors, 2011: Emission pathways consistent with a 2°C global temperature limit. Nat. Climate Change, 1, 413418, doi:10.1038/nclimate1258.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, doi:10.1002/2013GL058955.

    • Search Google Scholar
    • Export Citation
  • Schaller, N., J. Cermak, M. Wild, and R. Knutti, 2013: The sensitivity of the modeled energy budget and hydrological cycle to CO2 and solar forcing. Earth Syst. Dyn., 4, 253266, doi:10.5194/esd-4-253-2013.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 2000: The time-dependence of climate sensitivity. Geophys. Res. Lett., 27, 26852688, doi:10.1029/2000GL011373.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, O. Boucher, C. Bretherton, P. M. Forster, J. M. Gregory, and B. Stevens, 2014: Adjustments in the forcing-feedback framework for understanding climate change. Bull. Amer. Meteor. Soc., 96, 217228, doi:10.1175/BAMS-D-13-00167.1.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., R. Derwent, D. Wuebbles, and J.-J. Morcrette, 1990: Radiative forcing of climate. Climate Change: The IPCC Scientific Assessment, J. Houghton, G. J. Jenkins, and J. J. Ephraums, Eds., Cambridge University Press, 41–68.

  • Shine, K. P., J. Cook, E. J. Highwood, and M. M. Joshi, 2003: An alternative to radiative forcing for estimating the relative importance of climate change mechanisms. Geophys. Res. Lett., 30, 2047, doi:10.1029/2003GL018141.

    • Search Google Scholar
    • Export Citation
  • Smith, R. S., R. Sutton, and J. M. Gregory, 2014: The impact of salinity perturbations on the future uptake of heat by the Atlantic Ocean. Geophys. Res. Lett., 41, 90729079, doi:10.1002/2014GL062169.

    • Search Google Scholar
    • Export Citation
  • Staten, P. W., T. Reichler, and J. Lu, 2014: The transient circulation response to radiative forcings and sea surface warming. J. Climate, 27, 93239336, doi:10.1175/JCLI-D-14-00035.1.

    • Search Google Scholar
    • Export Citation
  • Tomassini, L., and Coauthors, 2013: The respective roles of surface temperature driven feedbacks and tropospheric adjustment to CO2 in CMIP5 transient climate simulations. Climate Dyn., 41, 31033126, doi:10.1007/s00382-013-1682-3.

    • Search Google Scholar
    • Export Citation
  • Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, doi:10.1007/s00382-013-1725-9.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., H. Shiogama, M. Yoshimori, T. Ogura, T. Yokohata, H. Okamoto, S. Emori, and M. Kimoto, 2012: Fast and slow timescales in the tropical low-cloud response to increasing CO2 in two climate models. Climate Dyn., 39, 16271641, doi:10.1007/s00382-011-1178-y.

    • Search Google Scholar
    • Export Citation
  • Webb, M., F. Lambert, and J. Gregory, 2013: Origins of differences in climate sensitivity, forcing and feedback in climate models. Climate Dyn., 40, 677707, doi:10.1007/s00382-012-1336-x.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., W. J. Ingram, and J. M. Gregory, 2008: Time variation of effective climate sensitivity in GCMs. J. Climate, 21, 50765090, doi:10.1175/2008JCLI2371.1.

    • Search Google Scholar
    • Export Citation
  • Winton, M., K. Takahashi, and I. Held, 2010: Importance of ocean heat uptake efficacy to transient climate change. J. Climate, 23, 23332344, doi:10.1175/2009JCLI3139.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., R. Seager, M. Ting, N. Naik, and T. A. Shaw, 2012: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part I: Model experiments and transient thermal response in the troposphere. J. Climate, 25, 28622879, doi:10.1175/JCLI-D-11-00284.1.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, P. N. Blossey, and M. Khairoutdinov, 2012: Fast cloud adjustment to increasing CO2 in a superparameterized climate model. J. Adv. Model. Earth Syst., 4, M05001, doi:10.1029/2011MS000092.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26, 50075027, doi:10.1175/JCLI-D-12-00555.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1868 794 70
PDF Downloads 561 126 20