The Time Scales of Variability of Marine Low Clouds

Simon P. de Szoeke Oregon State University, Corvallis, Oregon

Search for other papers by Simon P. de Szoeke in
Current site
Google Scholar
PubMed
Close
,
Kathryn L. Verlinden Oregon State University, Corvallis, Oregon

Search for other papers by Kathryn L. Verlinden in
Current site
Google Scholar
PubMed
Close
,
Sandra E. Yuter North Carolina State University, Raleigh, North Carolina

Search for other papers by Sandra E. Yuter in
Current site
Google Scholar
PubMed
Close
, and
David B. Mechem University of Kansas, Lawrence, Kansas

Search for other papers by David B. Mechem in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Multidecade global regressions of inversion strength, vertical velocity, and sea surface temperature (SST) on low cloud amount, from subdaily to multiyear time scales, refute the dominance of seasonal inversion strength on marine low cloud variability. Multiday low cloud variance averaged over the eastern Pacific and Atlantic stratocumulus regions [5 × 10−2 (cloud amount)2] is twice the subdaily variance and 5 times larger than the multimonth variance. The broad multiday band contains most (60%) of the variance, despite strong seasonal (annual) and diurnal spectral peaks. Multiday low cloud amount over the eastern tropical and midlatitude oceans is positively correlated to inversion strength, with a slope of 2%–5% K−1. Anecdotes show multiday low cloud and inversion strength anomalies propagate equatorward from midlatitudes. Previously shown correlations of low clouds to strong inversions and cool SST on monthly and longer time scales in the stratocumulus regions imply positive cloud-radiative feedbacks, with e-folding time scales of 300 days for SST and 14 days for atmospheric boundary layer temperature. On multimonth time scales, removing the effect of SST on low clouds reduces the low cloud amount explained by inversion strength by a factor of 3, but SST has a small effect at other time scales. Contrary to their positive correlation in the stratocumulus cloud decks, low clouds are anticorrelated to inversion strength over most of the tropics on daily and subdaily time scales.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website.

Corresponding author address: Simon P. de Szoeke, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin. Building, Corvallis, OR 97331. E-mail: sdeszoek@coas.oregonstate.edu

Abstract

Multidecade global regressions of inversion strength, vertical velocity, and sea surface temperature (SST) on low cloud amount, from subdaily to multiyear time scales, refute the dominance of seasonal inversion strength on marine low cloud variability. Multiday low cloud variance averaged over the eastern Pacific and Atlantic stratocumulus regions [5 × 10−2 (cloud amount)2] is twice the subdaily variance and 5 times larger than the multimonth variance. The broad multiday band contains most (60%) of the variance, despite strong seasonal (annual) and diurnal spectral peaks. Multiday low cloud amount over the eastern tropical and midlatitude oceans is positively correlated to inversion strength, with a slope of 2%–5% K−1. Anecdotes show multiday low cloud and inversion strength anomalies propagate equatorward from midlatitudes. Previously shown correlations of low clouds to strong inversions and cool SST on monthly and longer time scales in the stratocumulus regions imply positive cloud-radiative feedbacks, with e-folding time scales of 300 days for SST and 14 days for atmospheric boundary layer temperature. On multimonth time scales, removing the effect of SST on low clouds reduces the low cloud amount explained by inversion strength by a factor of 3, but SST has a small effect at other time scales. Contrary to their positive correlation in the stratocumulus cloud decks, low clouds are anticorrelated to inversion strength over most of the tropics on daily and subdaily time scales.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website.

Corresponding author address: Simon P. de Szoeke, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin. Building, Corvallis, OR 97331. E-mail: sdeszoek@coas.oregonstate.edu

Supplementary Materials

    • Supplemental Materials (ZIP 20.04 MB)
Save
  • Bellomo, K., A. C. Clement, T. Mauritsen, G. Rädel, and B. Stevens, 2014: Simulating the role of subtropical stratocumulus clouds in driving Pacific climate variability. J. Climate, 27, 51195131, doi:10.1175/JCLI-D-13-00548.1.

    • Search Google Scholar
    • Export Citation
  • Bellomo, K., A. C. Clement, T. Mauritsen, G. Rädel, and B. Stevens, 2015: The influence of cloud feedbacks on equatorial Atlantic variability. J. Climate, 28, 27252744, doi:10.1175/JCLI-D-14-00495.1.

    • Search Google Scholar
    • Export Citation
  • Blackman, R. B., and J. W. Tukey, 1958: The measurement of power spectra from the point of view of communications engineering—Part I. Bell Syst. Tech. J., 37, 185282, doi:10.1002/j.1538-7305.1958.tb03874.x.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Burgman, and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464, doi:10.1126/science.1171255.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., P. DiNezio, and C. Deser, 2011: Rethinking the ocean’s role in the Southern Oscillation. J. Climate, 24, 40564072, doi:10.1175/2011JCLI3973.1.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., Y. Wang, S.-P. Xie, and T. Miyama, 2006: Effect of shallow cumulus convection on the eastern Pacific climate in a coupled model. Geophys. Res. Lett., 33, L17713, doi:10.1029/2006GL026715.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., C. W. Fairall, D. E. Wolfe, L. Bariteau, and P. Zuidema, 2010: Surface flux observations on the southeastern tropical Pacific Ocean and attribution of SST errors in coupled ocean–atmosphere models. J. Climate, 23, 41524174, doi:10.1175/2010jcli3411.1.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., S. Yuter, D. Mechem, C. W. Fairall, C. D. Burleyson, and P. Zuidema, 2012: Observations of stratocumulus clouds and their effect on the eastern Pacific surface heat budget along 20°S. J. Climate, 25, 85428567, doi:10.1175/JCLI-D-11-00618.1.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., R. J. Allen, R. Bennartz, and D. J. Vimont, 2013: The modification of sea surface temperature anomaly linear damping time scales by stratocumulus clouds. J. Climate, 26, 36193630, doi:10.1175/JCLI-D-12-00370.1.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29A, 289305, doi:10.1111/j.2153-3490.1977.tb00740.x.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and R. Muñoz, 2004: The diurnal cycle in circulation and cloudiness over the subtropical southeast Pacific: A modeling study. J. Climate, 17, 16991710, doi:10.1175/1520-0442(2004)017<1699:TDCICA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • George, R. C., and R. Wood, 2010: Subseasonal variability of low cloud radiative properties over the southeast Pacific Ocean. Atmos. Chem. Phys., 10, 40474063, doi:10.5194/acp-10-4047-2010.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate—Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 373386, doi:10.1016/S0074-6142(01)80129-7.

  • ISCCP Science Team, 1999: ISCCP D1. NASA Atmospheric Science Data Center, accessed July 2013, doi:10.5067/ISCCP/D1.

  • Klein, S. A., 1997: Synoptic variability of low-cloud properties and meteorological parameters in the subtropical trade wind boundary layer. J. Climate, 10, 20182039, doi:10.1175/1520-0442(1997)010<2018:SVOLCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., D. L. Hartmann, and J. R. Norris, 1995: On the relationships among low-cloud structure, sea surface temperature, and atmospheric circulation in the summertime northeast Pacific. J. Climate, 8, 11401155, doi:10.1175/1520-0442(1995)008<1140:OTRALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and Coauthors, 2011: Globally gridded satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893907, doi:10.1175/2011BAMS3039.1.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. E. Waliser, J.-L. Li, and X. Jiang, 2012: On the annual cycle, variability, and correlations of oceanic low-topped clouds with large-scale circulation using Aqua MODIS and ERA-Interim. J. Climate, 25, 61526174, doi:10.1175/JCLI-D-11-00478.1.

    • Search Google Scholar
    • Export Citation
  • Lauer, A., K. Hamilton, Y. Wang, V. T. J. Phillips, and R. Bennartz, 2010: The impact of global warming on marine boundary layer clouds over the eastern Pacific—A regional model study. J. Climate, 23, 58445863, doi:10.1175/2010JCLI3666.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Ma, C.-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9, 16351645, doi:10.1175/1520-0442(1996)009<1635:PSCATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mauger, G. S., and J. R. Norris, 2010: Assessing the impact of meteorological history on subtropical cloud fraction. J. Climate, 23, 29262940, doi:10.1175/2010JCLI3272.1.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., D. L. Williamson, C. Hannay, and J. G. Olson, 2012: Southeast Pacific stratocumulus in the Community Atmosphere Model. J. Climate, 25, 61756192, doi:10.1175/JCLI-D-11-00503.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1960: Smoothing and persistence. J. Meteor., 17, 9293, doi:10.1175/1520-0469(1960)017<0092:SAP>2.0.CO;2.

  • Myers, T. A., and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 75077524, doi:10.1175/JCLI-D-12-00736.1.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 2000: What can cloud observations tell us about climate variability? Space Sci. Rev., 94, 375380, doi:10.1023/A:1026704314326.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 2005: Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing. J. Geophys. Res., 110, D08206, doi:10.1029/2004JD005600.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and A. T. Evan, 2015: Empirical removal of artifacts from the ISCCP and PATMOS-x satellite cloud records. J. Atmos. Oceanic Technol., 32, 691702, , doi:10.1175/JTECH-D-14-00058.1.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., P. Minnis, and L. O’Neill, 2013: The diurnal cycle of cloud-top height and cloud cover over the southeastern Pacific as observed by GOES-10. J. Atmos. Sci., 70, 23932408, doi:10.1175/JAS-D-12-0325.1.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., D. Gu, D. Halpern, G. Lambert, N. C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972, doi:10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and R. Garreaud, 2010: Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx—Part 1: Mean structure and diurnal cycle. Atmos. Chem. Phys., 10, 44914506, doi:10.5194/acp-10-4491-2010.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and J. E. Kristjánsson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11, 15871614, doi:10.1175/1520-0442(1998)011<1587:ACOTCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Risen, C. M., and D. B. Chleton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuickSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, doi:10.1175/2008JPO3881.1.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., and W. B. Rossow, 2003: Characterizing some of the influences of the general circulation on subtropical marine boundary layer clouds. J. Atmos. Sci., 60, 711728, doi:10.1175/1520-0469(2003)060<0711:CSOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8, 17951809, doi:10.1175/1520-0442(1995)008<1795:AOSODV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox, 1979: Marine stratocumulus convection. Part I: Governing equations and horizontally homogeneous solutions. J. Atmos. Sci., 36, 12861307, doi:10.1175/1520-0469(1979)036<1286:MSCPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, F., A. Hall, and Q. Xu, 2011: On the relationship between low cloud variability and lower tropospheric stability in the Southeast Pacific. Atmos. Chem. Phys., 11, 90539065, doi:10.5194/acp-11-9053-2011.

    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and S. Woolnough, 2014: Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Climate Dyn., 43, 28892913, doi:10.1007/s00382-013-1691-2.

    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., S. J. Abel, R. Wood, C. R. Mechoso, G. Allen, and L. C. Shaffrey, 2011: Large-scale and synoptic meteorology in the south-east Pacific during the observations campaign VOCALS-REx in austral Spring 2008. Atmos. Chem. Phys., 11, 49775009, doi:10.5194/acp-11-4977-2011.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., W. B. Rossow, and D. Rind, 1992: Global patterns of cloud optical thickness variation with temperature. J. Climate, 5, 14841495, doi:10.1175/1520-0442(1992)005<1484:GPOCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Welch, P. D., 1967: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust., 15, 7073, doi:10.1109/TAU.1967.1161901.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. Louis Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, doi:10.1175/JCLI3988.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS ocean-cloud-atmosphere-land study regional experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, doi:10.5194/acp-11-627-2011.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2005: The shape of continents, air–sea interaction, and the rising branch of the Hadley circulation. The Hadley Circulation: Past, Present and Future, H. F. Diaz and R. S. Bradley, Eds., Kluwer Academic Publishers, 121–152.

  • Xu, H., S.-P. Xie, and Y. Q. Wang, 2005: Subseasonal variability of the southeast Pacific stratus cloud deck. J. Climate, 18, 131142, doi:10.1175/JCLI3250.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., B. Stevens, B. Medeiros, and M. Ghil, 2009: Low-cloud fraction, lower-tropospheric stability, and large-scale divergence. J. Climate, 22, 48274844, doi:10.1175/2009JCLI2891.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 534 225 10
PDF Downloads 402 116 5