Zonal Variations in the Southern Ocean Heat Budget

Veronica Tamsitt Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Veronica Tamsitt in
Current site
Google Scholar
PubMed
Close
,
Lynne D. Talley Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Lynne D. Talley in
Current site
Google Scholar
PubMed
Close
,
Matthew R. Mazloff Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Matthew R. Mazloff in
Current site
Google Scholar
PubMed
Close
, and
Ivana Cerovečki Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Ivana Cerovečki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatial structure of the upper ocean heat budget in the Antarctic Circumpolar Current (ACC) is investigated using the ⅙°, data-assimilating Southern Ocean State Estimate (SOSE) for 2005–10. The ACC circumpolar integrated budget shows that 0.27 PW of ocean heat gain from the atmosphere and 0.38 PW heat gain from divergence of geostrophic heat transport are balanced by −0.58 PW cooling by divergence of Ekman heat transport and −0.09 PW divergence of vertical heat transport. However, this circumpolar integrated balance obscures important zonal variations in the heat budget. The air–sea heat flux shows a zonally asymmetric pattern of ocean heat gain in the Indian and Atlantic sectors and ocean heat loss in the Pacific sector of the ACC. In the Atlantic and Indian sectors of the ACC, the surface ocean heat gain is primarily balanced by divergence of equatorward Ekman heat transport that cools the upper ocean. In the Pacific sector, surface ocean heat loss and cooling due to divergence of Ekman heat transport are balanced by warming due to divergence of geostrophic heat advection, which is similar to the dominant heat balance in the subtropical Agulhas Return Current. The divergence of horizontal and vertical eddy advection of heat is important for warming the upper ocean close to major topographic features, while the divergence of mean vertical heat advection is a weak cooling term. The results herein show that topographic steering and zonal asymmetry in air–sea exchange lead to substantial zonal asymmetries in the heat budget, which is important for understanding the upper cell of the overturning circulation.

Corresponding author address: Veronica Tamsitt, Climate, Atmospheric Science and Physical Oceanography, Scripps Institution of Oceanography, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0230. E-mail: vtamsitt@ucsd.edu

Abstract

The spatial structure of the upper ocean heat budget in the Antarctic Circumpolar Current (ACC) is investigated using the ⅙°, data-assimilating Southern Ocean State Estimate (SOSE) for 2005–10. The ACC circumpolar integrated budget shows that 0.27 PW of ocean heat gain from the atmosphere and 0.38 PW heat gain from divergence of geostrophic heat transport are balanced by −0.58 PW cooling by divergence of Ekman heat transport and −0.09 PW divergence of vertical heat transport. However, this circumpolar integrated balance obscures important zonal variations in the heat budget. The air–sea heat flux shows a zonally asymmetric pattern of ocean heat gain in the Indian and Atlantic sectors and ocean heat loss in the Pacific sector of the ACC. In the Atlantic and Indian sectors of the ACC, the surface ocean heat gain is primarily balanced by divergence of equatorward Ekman heat transport that cools the upper ocean. In the Pacific sector, surface ocean heat loss and cooling due to divergence of Ekman heat transport are balanced by warming due to divergence of geostrophic heat advection, which is similar to the dominant heat balance in the subtropical Agulhas Return Current. The divergence of horizontal and vertical eddy advection of heat is important for warming the upper ocean close to major topographic features, while the divergence of mean vertical heat advection is a weak cooling term. The results herein show that topographic steering and zonal asymmetry in air–sea exchange lead to substantial zonal asymmetries in the heat budget, which is important for understanding the upper cell of the overturning circulation.

Corresponding author address: Veronica Tamsitt, Climate, Atmospheric Science and Physical Oceanography, Scripps Institution of Oceanography, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0230. E-mail: vtamsitt@ucsd.edu
Save
  • Bourassa, M. A., and Coauthors, 2013: High-latitude ocean and sea ice surface fluxes: Challenges for climate research. Bull. Amer. Meteor. Soc., 94, 403423, doi:10.1175/BAMS-D-11-00244.1.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., M. R. Mazloff, and L. D. Talley, 2011: A comparison of Southern Ocean air–sea buoyancy flux from an ocean state estimate with five other products. J. Climate, 24, 62836306, doi:10.1175/2011JCLI3858.1.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., L. D. Talley, M. R. Mazloff, and G. Maze, 2013: Subantarctic Mode Water formation, destruction, and export in the eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 43, 14851511, doi:10.1175/JPO-D-12-0121.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, D. L. Witter, and J. G. Richman, 1990: Geosat altimeter observations of the surface circulation of the Southern Ocean. J. Geophys. Res., 95 (C10), 17 87717 903, doi:10.1029/JC095iC10p17877.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. Deszoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dong, S., and K. A. Kelly, 2004: Heat budget in the Gulf Stream region: The importance of heat storage and advection. J. Phys. Oceanogr., 34, 12141231, doi:10.1175/1520-0485(2004)034<1214:HBITGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dong, S., S. T. Gille, and J. Sprintall, 2007: An assessment of the Southern Ocean mixed layer heat budget. J. Climate, 20, 44254442, doi:10.1175/JCLI4259.1.

    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., L. L. Sommer, J. D. Zika, M. Gehlen, J. C. Orr, P. Mathiot, and B. Barnier, 2012: Standing and transient eddies in the response of the Southern Ocean meridional overturning to the southern annular mode. J. Climate, 25, 69586974, doi:10.1175/JCLI-D-11-00309.1.

    • Search Google Scholar
    • Export Citation
  • Faure, V., M. Arhan, S. Speich, and S. Gladyshev, 2011: Heat budget of the surface mixed layer south of Africa. Ocean Dyn., 61, 14411458, doi:10.1007/s10236-011-0444-1.

    • Search Google Scholar
    • Export Citation
  • Fenty, I., and P. Heimbach, 2013: Coupled sea ice–ocean state estimation in the Labrador Sea and Baffin Bay. J. Phys. Oceanogr., 43, 884904, doi:10.1175/JPO-D-12-065.1.

    • Search Google Scholar
    • Export Citation
  • Forget, G., 2010: Mapping ocean observations in a dynamical framework: A 2004–06 ocean atlas. J. Phys. Oceanogr., 40, 12011221, doi:10.1175/2009JPO4043.1.

    • Search Google Scholar
    • Export Citation
  • Gille, S., and K. Kelly, 1996: Scales of spatial and temporal variability in the Southern Ocean. J. Geophys. Res., 101, 87598773, doi:10.1029/96JC00203.

    • Search Google Scholar
    • Export Citation
  • Hobbs, W. R., and M. N. Raphael, 2007: A representative time-series for the Southern Hemisphere zonal wave 1. Geophys. Res. Lett., 34, L05702, doi:10.1029/2006GL028740.

    • Search Google Scholar
    • Export Citation
  • Hobbs, W. R., and M. N. Raphael, 2010: Characterizing the zonally asymmetric component of the SH circulation. Climate Dyn., 35, 859873, doi:10.1007/s00382-009-0663-z.

    • Search Google Scholar
    • Export Citation
  • Ito, T., M. Woloszyn, and M. Mazloff, 2010: Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature, 463, 8083, doi:10.1038/nature08687.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, and T. J. McDougall, 2008: Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38, 13571376, doi:10.1175/2007JPO3464.1.

    • Search Google Scholar
    • Export Citation
  • Jerlov, N. G., 1968: Optical Oceanography. Elsevier, 199 pp.

  • Karsten, R. H., and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32, 33153327, doi:10.1175/1520-0485(2002)032<3315:CTRCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lenn, Y.-D., and T. K. Chereskin, 2009: Observations of Ekman currents in the Southern Ocean. J. Phys. Oceanogr., 39, 768779, doi:10.1175/2008JPO3943.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 (C3), 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, doi:10.1175/2009JPO4236.1.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., T. J. Hoar, H. van Loon, and M. Raphael, 1999: Quasi-stationary wave variability in NSCAT winds. J. Geophys. Res., 104, 11 42511 435, doi:10.1029/1998JC900087.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., A. M. Hogg, and M. L. Ward, 2011: Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing. Geophys. Res. Lett., 38, L14602, doi:10.1029/2011GL048031.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., O. A. Saenko, A. M. Hogg, and P. Spence, 2013: The role of vertical eddy flux in Southern Ocean heat uptake. Geophys. Res. Lett., 40, 54455450, doi:10.1002/2013GL057706.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., R. Ferrari, and K. L. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, doi:10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956, doi:10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and J. C. Marshall, 2006: The Antarctic Circumpolar Current in three dimensions. J. Phys. Oceanogr., 36, 651669, doi:10.1175/JPO2893.1.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and M. H. England, 2002: Ekman transport dominates local air–sea fluxes in driving variability of Subantarctic Mode Water. J. Phys. Oceanogr., 32, 13081321, doi:10.1175/1520-0485(2002)032<1308:ETDLAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis, 2016: Mesoscale to submesoscale wavenumber spectra in Drake Passage. J. Phys. Oceanogr., 46, 601620, doi:10.1175/JPO-D-15-0087.1.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Gilson, J. Willis, P. Sutton, and K. Ridgway, 2005: Closing the time-varying mass and heat budgets for large ocean areas: The Tasman box. J. Climate, 18, 23302343, doi:10.1175/JCLI3409.1.

    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., K. Speer, R. Morrow, and N. Wienders, 2006: Formation of Subantarctic Mode Water in the southeastern Indian Ocean. Ocean Dyn., 56, 525542, doi:10.1007/s10236-005-0054-x.

    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., R. Morrow, and K. Speer, 2008: Eddy heat diffusion and Subantarctic Mode Water formation. Geophys. Res. Lett., 35, L05607, doi:10.1029/2007GL032827.

    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., K. G. Speer, and S. R. Rintoul, 2010: Zonally asymmetric response of the Southern Ocean mixed-layer depth to the southern annular mode. Nat. Geosci., 3, 273279, doi:10.1038/ngeo812.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., N. Gruber, M. A. Brzezinski, and J. P. Dunne, 2004: High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427, 5660, doi:10.1038/nature02127.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr., 31, 10051030, doi:10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. R. Rintoul, 2009: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 2. Variability and relationship to sea surface height. J. Geophys. Res., 114, C11019, doi:10.1029/2008JC005248.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30, 32123222, doi:10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and D. R. Watts, 2002: Heat flux carried by the Antarctic Circumpolar Current mean flow. J. Geophys. Res., 107 (C9), 3119, doi:10.1029/2001JC001187.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972, doi:10.1175/JPO-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., and R. L. Jenne, 1972: The zonal harmonic standing waves in the Southern Hemisphere. J. Geophys. Res., 77, 9921003, doi:10.1029/JC077i006p00992.

    • Search Google Scholar
    • Export Citation
  • Vivier, F., K. A. Kelly, and L. A. Thompson, 2002: Heat budget in the Kuroshio Extension region: 1993–99. J. Phys. Oceanogr., 32, 34363454, doi:10.1175/1520-0485(2002)032<3436:HBITKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivier, F., D. Iudicone, F. Busdraghi, and Y.-H. Park, 2010: Dynamics of sea-surface temperature anomalies in the Southern Ocean diagnosed from a 2D mixed-layer model. Climate Dyn., 34, 153184, doi:10.1007/s00382-009-0724-3.

    • Search Google Scholar
    • Export Citation
  • Wang, J., M. R. Mazloff, and S. T. Gille, 2014: Pathways of the Agulhas waters poleward of 29°S. J. Geophys. Res. Oceans, 119, 42344250, doi:10.1002/2014JC010049.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., P. Cessi, J. L. McClean, and M. E. Maltrud, 2008: Vertical heat transport in eddying ocean models. Geophys. Res. Lett., 35, L23605, doi:10.1029/2008GL036138.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2013: Dynamically and kinematically consistent global ocean circulation and ice state estimates. Int. Geophys., 103, 553579, doi:10.1016/B978-0-12-391851-2.00021-0.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1172 456 33
PDF Downloads 1016 309 26