The Physics of Drought in the U.S. Central Great Plains

Ben Livneh Cooperative Institute for Research in Environmental Science, and Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Ben Livneh in
Current site
Google Scholar
PubMed
Close
and
Martin P. Hoerling NOAA/Earth System Research Laboratory, Physical Sciences Division, Boulder, Colorado

Search for other papers by Martin P. Hoerling in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The semiarid U.S. Great Plains is prone to severe droughts having major consequences for agricultural production, livestock health, and river navigation. The recent 2012 event was accompanied by record deficits in precipitation and high temperatures during the May–August growing season. Here the physics of Great Plains drought are explored by addressing how meteorological drivers induce soil moisture deficits during the growing season. Land surface model (LSM) simulations driven by daily observed meteorological forcing from 1950 to 2013 compare favorably with satellite-derived terrestrial water anomalies and reproduce key features found in the U.S. Drought Monitor. Results from simulations by two LSMs reveal that precipitation was directly responsible for between 72% and 80% of the soil moisture depletion during 2012, and likewise has accounted for the majority of Great Plains soil moisture variability since 1950. Energy balance considerations indicate that a large fraction of the growing season temperature variability is itself driven by precipitation, pointing toward an even larger net contribution of precipitation to soil moisture variability.

To assess robustness across a larger sample of drought events, daily meteorological output from 1050 years of climate simulations, representative of conditions in 1979–2013, are used to drive two LSMs. Growing season droughts, and low soil moisture conditions especially, are confirmed to result principally from rainfall deficits. Antecedent meteorological and soil moisture conditions are shown to affect growing season soil moisture, but their effects are secondary to forcing by contemporaneous rainfall deficits. This understanding of the physics of growing season droughts is used to comment on plausible Great Plains soil moisture changes in a warmer world.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0697.s1.

Corresponding author address: Ben Livneh, CIRES, University of Colorado Boulder, 216 UCB, Boulder, CO 80309. E-mail: ben.livneh@colorado.edu

Abstract

The semiarid U.S. Great Plains is prone to severe droughts having major consequences for agricultural production, livestock health, and river navigation. The recent 2012 event was accompanied by record deficits in precipitation and high temperatures during the May–August growing season. Here the physics of Great Plains drought are explored by addressing how meteorological drivers induce soil moisture deficits during the growing season. Land surface model (LSM) simulations driven by daily observed meteorological forcing from 1950 to 2013 compare favorably with satellite-derived terrestrial water anomalies and reproduce key features found in the U.S. Drought Monitor. Results from simulations by two LSMs reveal that precipitation was directly responsible for between 72% and 80% of the soil moisture depletion during 2012, and likewise has accounted for the majority of Great Plains soil moisture variability since 1950. Energy balance considerations indicate that a large fraction of the growing season temperature variability is itself driven by precipitation, pointing toward an even larger net contribution of precipitation to soil moisture variability.

To assess robustness across a larger sample of drought events, daily meteorological output from 1050 years of climate simulations, representative of conditions in 1979–2013, are used to drive two LSMs. Growing season droughts, and low soil moisture conditions especially, are confirmed to result principally from rainfall deficits. Antecedent meteorological and soil moisture conditions are shown to affect growing season soil moisture, but their effects are secondary to forcing by contemporaneous rainfall deficits. This understanding of the physics of growing season droughts is used to comment on plausible Great Plains soil moisture changes in a warmer world.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0697.s1.

Corresponding author address: Ben Livneh, CIRES, University of Colorado Boulder, 216 UCB, Boulder, CO 80309. E-mail: ben.livneh@colorado.edu

Supplementary Materials

    • Supplemental Materials (PDF 595.40 KB)
Save
  • Andreadis, K. M., P. Storck, and D. P. Lettenmaier, 2009: Modeling snow accumulation and ablation processes in forested environments. Water Resour. Res., 45, W05429, doi:10.1029/2008WR007042.

    • Search Google Scholar
    • Export Citation
  • Basara, J. B., J. N. Maybourn, C. M. Peirano, J. E. Tate, P. J. Brown, J. D. Hoey, and B. R. Smith, 2013: Drought and associated impacts in the Great Plains of the United States—A review. Int. J. Geosci., 4, 7281, doi:10.4236/ijg.2013.46A2009.

    • Search Google Scholar
    • Export Citation
  • Burnash, R. J. C., R. L. Ferral, and R. A. McGuire, 1973: A generalized streamflow simulation system—Conceptual modeling for digital computers. Joint Federal and State River Forecast Center Tech. Rep., U.S. National Weather Service and California Department of Water Resources (Sacramento), 204 pp.

  • Chang, F. C., and J. M. Wallace, 1987: Meteorological conditions during heat waves and droughts in the United States Great Plains. Mon. Wea. Rev., 115, 12531269, doi:10.1175/1520-0493(1987)115<1253:MCDHWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, doi:10.1007/s00382-014-2075-y.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv., 1, e1400082, doi:10.1126/sciadv.1400082.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., R. Seager, M. A. Cane, and D. W. Stahle, 2007: North American drought: Reconstructions, causes, and consequences. Earth Sci. Rev., 81, 93134, doi:10.1016/j.earscirev.2006.12.002.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, doi:10.1038/nclimate1633.

    • Search Google Scholar
    • Export Citation
  • Dhuyvetter, K. C., C. R. Thompson, C. A. Norwood, and A. D. Halvorson, 1996: Economics of dryland cropping systems in the Great Plains: A review. J. Prod. Agric., 9, 216222, doi:10.2134/jpa1996.0216.

    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2014: The making of an extreme event: Putting the pieces together. Bull. Amer. Meteor. Soc., 95, 427440, doi:10.1175/BAMS-D-12-00069.1.

    • Search Google Scholar
    • Export Citation
  • Durre, I., J. M. Wallace, and D. P. Lettenmaier, 2000: Dependence of extreme daily maximum temperatures on antecedent soil moisture in the contiguous United States during summer. J. Climate, 13, 26412651, doi:10.1175/1520-0442(2000)013<2641:DOEDMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and S. Feng, 2014: Responses of terrestrial aridity to global warming. J. Geophys. Res., 119, 78637875, doi:10.1002/2014JD021608.

    • Search Google Scholar
    • Export Citation
  • Gao, H., and Coauthors, 2010: Water budget record from Variable Infiltration Capacity (VIC) Model. Algorithm Theoretical Basis Document for Terrestrial Water Cycle Data Records, 1–41.

  • Georgakakos, K. P., D. H. Bae, and D. R. Cayan, 1995: Hydroclimatology of continental watersheds: 1. Temporal analyses. Water Resour. Res., 31, 655675, doi:10.1029/94WR02375.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 15331543, doi:10.1080/014311698215333.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and Coauthors, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 1721, doi:10.1038/ngeo1032.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. K. Eischeid, X. W. Quan, H. F. Diaz, R. S. Webb, R. M. Dole, and D. R. Easterling, 2012: Is a transition to semipermanent drought conditions imminent in the U.S. Great Plains? J. Climate, 25, 83808386, doi:10.1175/JCLI-D-12-00449.1.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and Coauthors, 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, doi:10.1175/JCLI-D-12-00270.1.

  • Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, doi:10.1175/BAMS-D-13-00055.1.

    • Search Google Scholar
    • Export Citation
  • Huang, J., H. M. van den Dool, and K. P. Georgarakos, 1996: Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9, 13501362, doi:10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., and D. P. Lettenmaier, 2012: Multi-criteria parameter estimation for the Unified Land Model. Hydrol. Earth Syst. Sci., 16, 30293048, doi:10.5194/hess-16-3029-2012.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., and D. P. Lettenmaier, 2013: Regional parameter estimation for the Unified Land Model. Water Resour. Res., 49, 100114, doi:10.1029/2012WR012220.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Y. Xia, K. E. Mitchell, M. B. Ek, and D. P. Lettenmaier, 2010: Noah LSM snow model diagnostics and enhancements. J. Hydrometeor., 11, 721738, doi:10.1175/2009JHM1174.1.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., P. J. Restrepo, and D. P. Lettenmaier, 2011: Development of a unified land model for prediction of surface hydrology and land–atmosphere interactions. J. Hydrometeor., 12, 12991320, doi:10.1175/2011JHM1361.1.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M. Andreadis, E. P. Maurer, and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., J. S. Deems, D. Schneider, J. J. Barsugli, and N. P. Molotch, 2014: Filling in the gaps: Inferring spatially distributed precipitation from gauge observations over complex terrain. Water Resour. Res., 50, 85898610, doi:10.1002/2014WR015442.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., T. J. Bohn, D. W. Pierce, F. Munoz-Arriola, B. Nijssen, R. Vose, D. R. Cayan, and L. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the US, and southern Canada 1950–2013. Sci. Data, 2, 150042, doi:10.1038/sdata.2015.42.

    • Search Google Scholar
    • Export Citation
  • Luo, L., and E. F. Wood, 2007: Monitoring and predicting the 2007 US drought. Geophys. Res. Lett., 34, L22702, doi:10.1029/2007GL031673.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and J. Williams, 1978: The correlation between temperature and precipitation in the United States and Europe. Mon. Wea. Rev., 106, 142147, doi:10.1175/1520-0493(1978)106<0142:TCBTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2004: NCEP North American regional reanalysis. 15th Symp. on Global Change and Climate Variations, Seattle, WA, Amer. Meteor. Soc., P1.1. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_72502.htm.]

  • Namias, J., 1960: Factors in the initiation, perpetuation, and termination of drought. Publication 51 of the IASH Commission of Surface Waters, International Association of Hydrological Sciences, 81–94. [Available online at http://hydrologie.org/redbooks/a051/051010.pdf.]

  • Nijssen, B., D. P. Lettenmaier, X. Liang, S. W. Wetzel, and E. F. Wood, 1997: Streamflow simulation for continental-scale river basins. Water Resour. Res., 33, 711724, doi:10.1029/96WR03517.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., R. Schnur, and D. P. Lettenmaier, 2001: Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J. Climate, 14, 17901808, doi:10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological Drought. U.S. Department of Commerce, Weather Bureau, 58 pp.

  • Quan, X.-W., M. P. Hoerling, B. Lyon, A. Kumar, M. A. Bell, M. K. Tippett, and H. Wang, 2012: Prospects for dynamical prediction of meteorological drought. J. Appl. Meteor. Climatol., 51, 12381252, doi:10.1175/JAMC-D-11-0194.1.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., L. Dümenil, E. Kirk, F. Lunkeit, M. Ponater, B. Rockel, and U. Schlese, 1989: The Hamburg version of the ECMWF model (ECHAM): Research activities in atmospheric and oceanic modelling. WMO-TD-332, 7-1–7.4.

  • Roeckner, E., G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, and A. Tompkins, 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. MPI Rep. 349, 127 pp.

  • Scheff, J., and D. M. Frierson, 2015: Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J. Climate, 28, 55835600, doi:10.1175/JCLI-D-14-00480.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485503, doi:10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2008: Potential predictability of long-term drought and pluvial conditions in the U.S. Great Plains. J. Climate, 21, 802816, doi:10.1175/2007JCLI1741.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and M. P. Hoerling, 2014: Atmosphere and ocean origins of North American droughts. J. Climate, 27, 45814606, doi:10.1175/JCLI-D-13-00329.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, doi:10.1126/science.1139601.

    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Ting, C. Li, N. Naik, B. Cook, J. Nakamura, and H. Liu, 2013: Projections of declining surface-water availability for the southwestern United States. Nat. Climate Change, 3, 482486, doi:10.1038/nclimate1787.

    • Search Google Scholar
    • Export Citation
  • Seager, R., L. Goddard, J. Nakamura, N. Henderson, and D. E. Lee, 2014: Dynamical causes of the 2010/11 Texas–northern Mexico drought. J. Hydrometeor., 15, 3968, doi:10.1175/JHM-D-13-024.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and E. F. Wood, 2008: Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Climate, 21, 432458, doi:10.1175/2007JCLI1822.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., B. Livneh, and E. F. Wood, 2012: Representation of terrestrial hydrology and large-scale drought of the continental US from the North American Regional Reanalysis. J. Hydrometeor., 13, 856876, doi:10.1175/JHM-D-11-065.1.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., A. McNally, G. Husak, and C. Funk, 2014: A seasonal agricultural drought forecast system for food-insecure regions of East Africa. Hydrol. Earth Syst. Sci., 18, 39073921, doi:10.5194/hess-18-3907-2014.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI‐M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, doi:10.1002/jame.20015.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., H. Hasenauer, and M. A. White, 2000: Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: An application over complex terrain in Austria. Agric. For. Meteor., 104, 255271, doi:10.1016/S0168-1923(00)00170-2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, doi:10.1038/nclimate2067.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., G. Van der Schrier, S. Beguería, C. Azorin-Molina, and J. I. Lopez-Moreno, 2015: Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J. Hydrol., 526, 4254, doi:10.1016/j.jhydrol.2014.11.025.

    • Search Google Scholar
    • Export Citation
  • Wang, H., S. D. Schubert, M. J. Suarez, J. Chen, M. Hoerling, A. Kumar, and P. Pegion, 2009: Attribution of the seasonality and regionality in climate trends over the United States during 1950–2000. J. Climate, 22, 25712590, doi:10.1175/2008JCLI2359.1.

    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., 1987: Drought in the Great Plains: A Bibliography. Nebraska Agricultural Experimental Station Misc. Publ. 39, University of Nebraska, 75 pp.

  • Williams, A. P., R. Seager, J. T. Abatzoglou, B. I. Cook, J. E. Smerdon, and E. R. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett., 42, 68196828, doi:10.1002/2015GL064924.

    • Search Google Scholar
    • Export Citation
  • Woodhouse, C. A., and J. T. Overpeck, 1998: 2000 years of drought variability in the central United States. Bull. Amer. Meteor. Soc., 79, 26932714, doi:10.1175/1520-0477(1998)079<2693:YODVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System Project Phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Yin, D., M. L. Roderick, G. Leech, F. Sun, and Y. Huang, 2014: The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys. Res. Lett., 41, 78917897, doi:10.1002/2014GL062039.

    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2015: The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Climate, 28, 44904512, doi:10.1175/JCLI-D-14-00363.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1338 435 46
PDF Downloads 865 196 11