Cross-Seasonal Relationship between the Boreal Autumn SAM and Winter Precipitation in the Northern Hemisphere in CMIP5

Ting Liu State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Ting Liu in
Current site
Google Scholar
PubMed
Close
,
Jianping Li College of Global Change and Earth System Sciences, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Jianping Li in
Current site
Google Scholar
PubMed
Close
,
Juan Feng College of Global Change and Earth System Sciences, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Juan Feng in
Current site
Google Scholar
PubMed
Close
,
Xiaofan Wang State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaofan Wang in
Current site
Google Scholar
PubMed
Close
, and
Yang Li College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, and College of Global Change and Earth System Sciences, Beijing Normal University, Beijing, China

Search for other papers by Yang Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent work suggests that the boreal autumn Southern Hemisphere annular mode (SAM) favors a tripole pattern of winter precipitation anomalies in the Northern Hemisphere. This study focuses on the abilities of climate models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5) to reproduce the physical processes involved in this observed cross-seasonal connection. A systematic evaluation suggested that 16 out of 25 models were essentially capable of reproducing this cross-seasonal connection. Two categories of models were selected to explore the underlying reasons for these successful simulations. Models that successfully simulated the cross-seasonal relationship were placed in the type-I category, and these performed well in reproducing the related physical mechanism, known as the “coupled ocean–atmosphere bridge,” in terms of the SST variability associated with the SAM and response of the meridional circulation to these SST anomalies. In contrast, the type-II category of models showed poor performance in representing the related processes and associated feedbacks, and the model biases compromised the performance of the simulated cross-seasonal relationship. These results demonstrate that the capability of the CMIP5 models to reproduce SST variability associated with the boreal autumn SAM and related coupled ocean–atmosphere bridge process plays a decisive role in the successful simulation of the cross-seasonal relationship.

Corresponding author address: Prof. Jianping Li, College of Global Change and Earth System Sciences, Beijing Normal University, No. 19, XinJieKouWai St., Beijing 100875, China. E-mail: ljp@bnu.edu.cn

Abstract

Recent work suggests that the boreal autumn Southern Hemisphere annular mode (SAM) favors a tripole pattern of winter precipitation anomalies in the Northern Hemisphere. This study focuses on the abilities of climate models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5) to reproduce the physical processes involved in this observed cross-seasonal connection. A systematic evaluation suggested that 16 out of 25 models were essentially capable of reproducing this cross-seasonal connection. Two categories of models were selected to explore the underlying reasons for these successful simulations. Models that successfully simulated the cross-seasonal relationship were placed in the type-I category, and these performed well in reproducing the related physical mechanism, known as the “coupled ocean–atmosphere bridge,” in terms of the SST variability associated with the SAM and response of the meridional circulation to these SST anomalies. In contrast, the type-II category of models showed poor performance in representing the related processes and associated feedbacks, and the model biases compromised the performance of the simulated cross-seasonal relationship. These results demonstrate that the capability of the CMIP5 models to reproduce SST variability associated with the boreal autumn SAM and related coupled ocean–atmosphere bridge process plays a decisive role in the successful simulation of the cross-seasonal relationship.

Corresponding author address: Prof. Jianping Li, College of Global Change and Earth System Sciences, Beijing Normal University, No. 19, XinJieKouWai St., Beijing 100875, China. E-mail: ljp@bnu.edu.cn
Save
  • Adler, R. F., C. Kidd, G. Petty, M. Morrissey, H. M. Goodman, and F. Einaudi, 2001: Intercomparison of global precipitation products: The third precipitation intercomparison project (PIP-3). Bull. Amer. Meteor. Soc., 82, 13771396, doi:10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boer, G., S. Fourest, and B. Yu, 2001: The signature of the annular modes in the moisture budget. J. Climate, 14, 36553665, doi:10.1175/1520-0442(2001)014<3655:TSOTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., E. Shuckburgh, J.-B. Sallee, Z. Wang, A. J. S. Meijers, N. Bruneau, T. Phillips, and L. J. Wilcox, 2013: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: Historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos., 118, 547562, doi:10.1002/jgrd.50153.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and I. G. Watterson, 2002: Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. J. Climate, 15, 11591174, doi:10.1175/1520-0442(2002)015<1159:MOIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2006: SAM and regional rainfall in IPCC AR4 models: Can anthropogenic forcing account for southwest Western Australian winter rainfall reduction? Geophys. Res. Lett., 33, L24708, doi:10.1029/2006GL028037.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. H. Whetton, and D. J. Karoly, 2003: The response of the Antarctic Oscillation to increasing and stabilized atmospheric CO2. J. Climate, 16, 15251538, doi:10.1175/1520-0442-16.10.1525.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., 2003: Atmospheric teleconnections involving the Southern Ocean. J. Geophys. Res., 108, 8080, doi:10.1029/2000JC000379.

  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, doi:10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., and D. W. J. Thompson, 2008: Observations of large-scale ocean–atmosphere interaction in the Southern Hemisphere. J. Climate, 21, 12441259, doi:10.1175/2007JCLI1809.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Y. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., J. Li, and Y. H. Tseng, 2015: The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dyn., 44, 20172034, doi:10.1007/s00382-014-2303-5.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2009: ERA-Interim project. NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 30 July 2015, doi:10.5065/D6CR5RD9.

  • Feng, J., J. P. Li, and Y. Li, 2010a: A monsoon-like southwest Australian circulation and its relation with rainfall in southwest Western Australia. J. Climate, 23, 13341353, doi:10.1175/2009JCLI2837.1.

    • Search Google Scholar
    • Export Citation
  • Feng, J., J. P. Li, and Y. Li, 2010b: Is there a relationship between the SAM and southwest Western Australian winter rainfall? J. Climate, 23, 60826089, doi:10.1175/2010JCLI3667.1.

    • Search Google Scholar
    • Export Citation
  • Feng, J., J. P. Li, and H. Xu, 2013: Increased summer rainfall in northwest Australia linked to southern Indian Ocean climate variability. J. Geophys. Res. Atmos., 118, 467480, doi:10.1029/2012JD018323.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1998: Antarctic Oscillation: Concept and applications. Chin. Sci. Bull., 43, 734738, doi:10.1007/BF02898949.

  • Gong, D., and S. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462, doi:10.1029/1999GL900003.

  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057, doi:10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 13031315, doi:10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G., and D. Bolvin, 2012: GPCP version 2.2 combined precipitation data set documentation. [Available online at ftp://precip.gsfc.nasa.gov/pub/gpcp-v2.2/doc/V2.2_doc.pdf.]

  • Huffman, G., D. Bolvin, E. J. Nelkin, and R. F. Adler, 2015: GPCP combined precipitation data set, version 2.2. NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 30 July 2015, doi:10.5065/D6R78C9S.

  • Karpechko, A. Y., N. P. Gillett, G. J. Marshall, and J. A. Screen, 2009: Climate impacts of the southern annular mode simulated by the CMIP3 models. J. Climate, 22, 37513768, doi:10.1175/2009JCLI2788.1.

    • Search Google Scholar
    • Export Citation
  • Lefebvre, W., H. Goosse, R. Timmermann, and T. Fichefet, 2004: Influence of the southern annular mode on the sea ice–ocean system. J. Geophys. Res., 109, C09005, doi:10.1029/2004JC002403.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., 2005: Physical nature of the Arctic Oscillation and its relationship with East Asian atmospheric circulation (in Chinese). Air–Sea–Land Interaction in Asia Monsoon Region and Their Impacts on the Climate Variation in China, Q. Yu et al., Eds., China Meteorological Press, 169–176.

  • Li, J. P., 2016: Impacts of annular modes on extreme climate events over the East Asian monsoon region. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. P. Li et al., Eds., Cambridge University Press, 370 pp.

  • Li, J. P., and J. X. Wang, 2003: A modified zonal index and its physical sense. Geophys. Res. Lett., 30, 1632, doi:10.1029/2003GL017441.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., and Coauthors, 2013: Progress in air–land–sea interactions in Asia and their role in global and Asian climate change (in Chinese). Chin. J. Atmos. Sci., 37, 518538.

    • Search Google Scholar
    • Export Citation
  • Li, X., and J. P. Li, 2009: Main submonthly timescales of Northern and Southern hemispheres annual modes (in Chinese). Chin. J. Atmos. Sci., 33, 215231.

    • Search Google Scholar
    • Export Citation
  • Li, X., and J. P. Li, 2010: Propagation characteristics circulation anomalies of sub-monthly Southern Hemisphere annular mode (in Chinese). Chin. J. Atmos. Sci., 34, 10991113.

    • Search Google Scholar
    • Export Citation
  • Li, X., and J. P. Li, 2012: Analysis of the quasi-geostrophic adjustment process of the Southern Hemisphere annular mode (in Chinese). Chin. J. Atmos. Sci., 36, 755768.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136, doi:10.1029/1999GL010478.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429, doi:10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., R. P. Allan, and G. J. Huffman, 2012: Co-variation of temperature and precipitation in CMIP5 models and satellite observations. Geophys. Res. Lett., 39, L13803, doi:10.1029/2012GL052093.

    • Search Google Scholar
    • Export Citation
  • Liu, T., J. P. Li, and F. Zheng, 2015: Influence of the boreal autumn SAM on winter precipitation over land in the Northern Hemisphere. J. Climate, 28, 88258839, doi:10.1175/JCLI-D-14-00704.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, doi:10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, G., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, G., and W. M. Connolley, 2006: Effect of changing Southern Hemisphere winter sea surface temperatures on southern annular mode strength. Geophys. Res. Lett., 33, L17717, doi:10.1029/2006GL026627.

    • Search Google Scholar
    • Export Citation
  • Marshall, G., and T. Bracegirdle, 2015: An examination of the relationship between the southern annular mode and Antarctic surface air temperatures in the CMIP5 historical runs. Climate Dyn., 45, 15131535, doi:10.1007/s00382-014-2406-z.

    • Search Google Scholar
    • Export Citation
  • Nan, S., and J. P. Li, 2003: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode. Geophys. Res. Lett., 30, 2266, doi:10.1029/2003GL018381.

    • Search Google Scholar
    • Export Citation
  • Nan, S., and J. P. Li, 2005a: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annual mode: I. Basic facts (in Chinese). Acta Meteor. Sin., 63, 837846.

    • Search Google Scholar
    • Export Citation
  • Nan, S., and J. P. Li, 2005b: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annual mode: II. The role of the Indian Ocean and South China Sea as an “oceanic bridge” (in Chinese). Acta Meteor. Sin., 63, 847856.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2002: NOAA’s Precipitation Reconstruction over Land (PREC/L). NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 30 July 2015. [Available online at http://www.esrl.noaa.gov/psd/data/gridded/data.precl.html.]

  • NOAA, 2008: NOAA Extended Reconstructed Sea Surface Temperature, version 3. National Centers for Environmental Information, accessed 30 July 2015. [Available online at http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v3.html.]

  • NOAA/CPC/NCEP/NWS/U.S. Department of Commerce, 1995: CPC Merged Analysis of Precipitation. NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 30 July 2015. [Available online at http://rda.ucar.edu/datasets/ds728.1/.]

  • Purich, A., T. Cowan, S.-K. Min, and W. Cai, 2013: Autumn precipitation trends over Southern Hemisphere midlatitudes as simulated by CMIP5 models. J. Climate, 26, 83418356, doi:10.1175/JCLI-D-13-00007.1.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., and U. Schneider, 2005: Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. Proc. Second Workshop of the Int. Precipitation Working Group, Monterey, CA, World Meteorological Organization, 231247.

  • Screen, J. A., N. P. Gillett, A. Y. Karpechko, and D. P. Stevens, 2010: Mixed layer temperature response to the southern annular mode: Mechanisms and model representation. J. Climate, 23, 664678, doi:10.1175/2009JCLI2976.1.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J. Climate, 19, 44574486, doi:10.1175/JCLI3843.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and J. P. Li, 2012: Space–time spectral analysis of the Southern Hemisphere daily 500-hPa geopotential height. Mon. Wea. Rev., 140, 38443856, doi:10.1175/MWR-D-12-00019.1.

    • Search Google Scholar
    • Export Citation
  • Sun, C., J. P. Li, F. F. Jin, and R. Q. Ding, 2013: Sea surface temperature inter-hemispheric dipole and its relation to tropical precipitation. Environ. Res. Lett., 8, 044006, doi:10.1088/1748-9326/8/4/044006.

    • Search Google Scholar
    • Export Citation
  • Sun, C., J. P. Li, J. Feng, and F. Xie, 2015a: A decadal-scale teleconnection between the North Atlantic Oscillation and subtropical eastern Australian rainfall. J. Climate, 28, 10741092, doi:10.1175/JCLI-D-14-00372.1.

    • Search Google Scholar
    • Export Citation
  • Sun, C., J. P. Li, and S. Zhao, 2015b: Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci. Rep., 5, 16853, doi:10.1038/srep16853.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, doi:10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Watterson, I., 2000: Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J. Climate, 13, 562578, doi:10.1175/1520-0442(2000)013<0562:SMZWVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watterson, I., 2001: Zonal wind vacillation and its interaction with the ocean: Implications for interannual variability and predictability. J. Geophys. Res., 106, 23 96523 975, doi:10.1029/2000JD000221.

    • Search Google Scholar
    • Export Citation
  • WCRP, 2005: Global Precipitation Climatology Centre (GPCC) full data reanalysis of monthly global land-surface precipitation, version 6.0. NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 30 July 2015. [Available online at http://rda.ucar.edu/datasets/ds496.0/.]

  • Wilks, D. S., 2005: Principal component (EOF) analysis. Statistical Methods in the Atmospheric Sciences, 2nd ed. D. S. Wilks, Ed., Elsevier, 463–507.

  • Wu, Z. W., J. P. Li, J. H. He, and Z. H. Jiang, 2006a: Large-scale atmospheric singularities and summer long-cycle droughts-floods abrupt alternation in the middle and lower reaches of the Yangtze River. Chin. Sci. Bull., 51, 20272034, doi:10.1007/s11434-006-2060-x.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. W., J. H. He, J. P. Li, and Z. H. Jiang, 2006b: The summer drought flood coexistence in the middle and lower reaches of the Yangtze River and analysis of its air-sea background feathers in anomalous years (in Chinese). Chin. J. Atmos. Sci., 30, 570577.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. W., J. P. Li, B. Wang, and X. Liu, 2009a: Can the Southern Hemisphere annular mode affect China winter monsoon? J. Geophys. Res., 114, D11107, doi:10.1029/2008JD011501.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. W., B. Wang, J. P. Li, and F. Jin, 2009b: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi:10.1029/2009JD011733.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. W., J. Dou, and H. Lin, 2015: Potential influence of the November–December Southern Hemisphere annular mode on the East Asian winter precipitation: A new mechanism. Climate Dyn., 44, 12151226, doi:10.1007/s00382-014-2241-2.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., and J. P. Li, 2012: Impact of preceding boreal winter Southern Hemisphere annual mode on spring precipitation over south China and related mechanism (in Chinese). Chin. J. Geophys., 55, 35423557.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., J. P. Li, R. T. Clark, and H. C. Nnamchi, 2013: Simulation and projection of the Southern Hemisphere annular mode in CMIP5 models. J. Climate, 26, 98609879, doi:10.1175/JCLI-D-13-00204.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., J. P. Li, and T. Liu, 2014: Some advances in studies of the climatic impacts of the Southern Hemisphere annular mode. J. Meteor. Res., 28, 820835, doi:10.1007/s13351-014-4079-2.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., J. P. Li, L. Wang, F. Xie, and X. Li, 2015a: Cross-seasonal influence of the December–February Southern Hemisphere annular mode on March–May meridional circulation and precipitation. J. Climate, 28, 68596881, doi:10.1175/JCLI-D-14-00515.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., J. P. Li, J. Feng, and Y. J. Li, 2015b: Relative importance of the austral summer and autumn SAM in modulating Southern Hemisphere extratropical autumn SST. J. Climate, 28, 80038020, doi:10.1175/JCLI-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 278 100 8
PDF Downloads 309 51 3