A Climatology of Clouds in Marine Cold Air Outbreaks in Both Hemispheres

Jennifer K. Fletcher School of Earth, Atmosphere, and Environment, Monash University, Clayton, Victoria, Australia

Search for other papers by Jennifer K. Fletcher in
Current site
Google Scholar
PubMed
Close
,
Shannon Mason School of Earth, Atmosphere, and Environment, Monash University, Clayton, Victoria, Australia

Search for other papers by Shannon Mason in
Current site
Google Scholar
PubMed
Close
, and
Christian Jakob School of Earth, Atmosphere, and Environment, Monash University, Clayton, Victoria, Australia

Search for other papers by Christian Jakob in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A climatology of clouds within marine cold air outbreaks, primarily using long-term satellite observations, is presented. Cloud properties between cold air outbreaks in different regions in both hemispheres are compared. In all regions marine cold air outbreak clouds tend to be low level with high cloud fraction and low-to-moderate optical thickness. Stronger cold air outbreaks have clouds that are optically thicker, but not geometrically thicker, than those in weaker cold air outbreaks. There is some evidence that clouds deepen and break up over the course of a cold air outbreak event. The top-of-the-atmosphere longwave cloud radiative effect in cold air outbreaks is small because the clouds have low tops. However, their surface longwave cloud radiative effect is considerably larger. The rarity of cold air outbreaks in summer limits their shortwave cloud radiative effect. They do not contribute substantially to global shortwave cloud radiative effect and are, therefore, unlikely to be a major source of shortwave cloud radiative effect errors in climate models.

Denotes Open Access content.

Current affiliation: University of Leeds, Leeds, United Kingdom.

Current affiliation: University of Reading, Reading, United Kingdom.

Corresponding author address: Jennifer K. Fletcher, School of Earth and Environment, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom. E-mail: jennifer.fletcher@leeds.ac.uk

Abstract

A climatology of clouds within marine cold air outbreaks, primarily using long-term satellite observations, is presented. Cloud properties between cold air outbreaks in different regions in both hemispheres are compared. In all regions marine cold air outbreak clouds tend to be low level with high cloud fraction and low-to-moderate optical thickness. Stronger cold air outbreaks have clouds that are optically thicker, but not geometrically thicker, than those in weaker cold air outbreaks. There is some evidence that clouds deepen and break up over the course of a cold air outbreak event. The top-of-the-atmosphere longwave cloud radiative effect in cold air outbreaks is small because the clouds have low tops. However, their surface longwave cloud radiative effect is considerably larger. The rarity of cold air outbreaks in summer limits their shortwave cloud radiative effect. They do not contribute substantially to global shortwave cloud radiative effect and are, therefore, unlikely to be a major source of shortwave cloud radiative effect errors in climate models.

Denotes Open Access content.

Current affiliation: University of Leeds, Leeds, United Kingdom.

Current affiliation: University of Reading, Reading, United Kingdom.

Corresponding author address: Jennifer K. Fletcher, School of Earth and Environment, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom. E-mail: jennifer.fletcher@leeds.ac.uk
Save
  • Agee, E. M., 1987: Mesoscale cellular convection over the oceans. Dyn. Atmos. Oceans, 10, 317341, doi:10.1016/0377-0265(87)90023-6.

  • Atkinson, B., and J. Wu Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403431, doi:10.1029/96RG02623.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nat. Geosci., 8, 261268, doi:10.1038/ngeo2398.

  • Bracegirdle, T. J., and E. W. Kolstad, 2010: Climatology and variability of Southern Hemisphere marine cold-air outbreaks. Tellus, 62A, 202208, doi:10.1111/j.1600-0870.2009.00431.x.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys., 18, 683697, doi:10.1029/RG018i003p00683.

    • Search Google Scholar
    • Export Citation
  • Brümmer, B., 1999: Roll and cell convection in wintertime Arctic cold-air outbreaks. J. Atmos. Sci., 56, 26132636, doi:10.1175/1520-0469(1999)056<2613:RACCIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brümmer, B., and S. Pohlmann, 2000: Wintertime roll and cell convection over Greenland and Barents Sea regions: A climatology. J. Geophys. Res., 105, 15 55915 566, doi:10.1029/1999JD900841.

    • Search Google Scholar
    • Export Citation
  • Ceccaldi, M., J. Delanoë, R. J. Hogan, N. L. Pounder, A. Protat, and J. Pelon, 2013: From CloudSat–CALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar–lidar observations. J. Geophys. Res. Atmos., 118, 79627981, doi:10.1002/jgrd.50579.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., Y.-T. Hwang, D. M. Frierson, and D. L. Hartmann, 2012: Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett., 39, L19708, doi:10.1029/2012GL053115.

    • Search Google Scholar
    • Export Citation
  • Chubb, T. H., J. B. Jensen, S. T. Siems, and M. J. Manton, 2013: In situ observations of supercooled liquid clouds over the Southern Ocean during the HIAPER pole-to-pole observation campaigns. Geophys. Res. Lett., 40, 52805285, doi:10.1002/grl.50986.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat–CALIPSO–MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, doi:10.1175/JCLI3998.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. J. Cotton, K. McBeath, A. P. Lock, S. Webster, and R. P. Allan, 2014: Improving a convection-permitting model simulation of a cold air outbreak. Quart. J. Roy. Meteor. Soc., 140, 124138, doi:10.1002/qj.2116.

    • Search Google Scholar
    • Export Citation
  • Fletcher, J. K., S. L. Mason, and C. Jakob, 2016: The climatology, meteorology, and boundary layer structure of marine cold air outbreaks in both hemispheres. J. Climate, 29, 19992014, doi:10.1175/JCLI-D-15-0268.1.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., L. M. Polvani, G. Tselioudis, Y. Wu, and M. D. Zelinka, 2013: The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the southern hemisphere. Geophys. Res. Lett., 40, 36883692, doi:10.1002/grl.50675.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, A. Protat, and J. Delanoë, 2012: A study on the low-altitude clouds over the Southern Ocean using the DARDAR-MASK. J. Geophys. Res., 117, D18204, doi:10.1029/2012JD017800.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, doi:10.1073/pnas.1213302110.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., and W. B. Rossow, 1997: Detection of cirrus overlapping low-level clouds. J. Geophys. Res., 102, 17271737, doi:10.1029/96JD02996.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., and T. J. Bracegirdle, 2008: Marine cold-air outbreaks in the future: An assessment of IPCC AR4 model results for the Northern Hemisphere. Climate Dyn., 30, 871885, doi:10.1007/s00382-007-0331-0.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, doi:10.1029/2009JD013422.

    • Search Google Scholar
    • Export Citation
  • Mason, S., C. Jakob, A. Protat, and J. Delanoë, 2014: Characterizing observed midtopped cloud regimes associated with Southern Ocean shortwave radiation biases. J. Climate, 27, 61896203, doi:10.1175/JCLI-D-14-00139.1.

    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, and D. P. Grosvenor, 2014: Observed Southern Ocean cloud properties and shortwave reflection. Part II: Phase changes and low cloud feedback. J. Climate, 27, 88588868, doi:10.1175/JCLI-D-14-00288.1.

    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., I. L. McCoy, and R. Wood, 2014: Climatology of stratocumulus cloud morphologies: Microphysical properties and radiative effects. Atmos. Chem. Phys., 14, 66956716, doi:10.5194/acp-14-6695-2014.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, doi:10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., D. J. Posselt, and S. C. Van Den Heever, 2012: Observational analysis of cloud and precipitation in midlatitude cyclones: Northern versus Southern Hemisphere warm fronts. J. Climate, 25, 51355151, doi:10.1175/JCLI-D-11-00569.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, D. J. Posselt, and S. C. van den Heever, 2013: Multiple satellite observations of cloud cover in extratropical cyclones. J. Geophys. Res. Atmos., 118, 99829996, doi:10.1002/jgrd.50718.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., S. Pfahl, H. Sodemann, and H. Wernli, 2015: A climatology of cold air outbreaks and their impact on air–sea heat fluxes in the high-latitude South Pacific. J. Climate, 28, 342364, doi:10.1175/JCLI-D-14-00482.1.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2014: Reconciling ground-based and space-based estimates of the frequency of occurrence and radiative effect of clouds around Darwin, Australia. J. Appl. Meteor. Climatol., 53, 456478, doi:10.1175/JAMC-D-13-072.1.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, doi:10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, S. H., 1972: Cloudiness as a global climatic feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness. J. Atmos. Sci., 29, 14131422, doi:10.1175/1520-0469(1972)029<1413:CAAGCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, doi:10.1175/JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the Southern Oceans. J. Climate, 23, 440454, doi:10.1175/2009JCLI3152.1.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and W. B. Rossow, 2006: Climate feedback implied by observed radiation and precipitation changes with midlatitude storm strength and frequency. Geophys. Res. Lett., 33, L02704, doi:10.1029/2005GL024513.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., Y. Zhang, and W. B. Rossow, 2000: Cloud and radiation variations associated with northern midlatitude low and high sea level pressure regimes. J. Climate, 13, 312327, doi:10.1175/1520-0442(2000)013<0312:CARVAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., W. Rossow, Y. Zhang, and D. Konsta, 2013: Global weather states and their properties from passive and active satellite cloud retrievals. J. Climate, 26, 77347746, doi:10.1175/JCLI-D-13-00024.1.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 13971416, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 37153735, doi:10.1175/JCLI-D-11-00248.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 804 281 13
PDF Downloads 674 218 8