Interdecadal Variability of Southeastern South America Rainfall and Moisture Sources during the Austral Summertime

Verónica Martín-Gómez Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay

Search for other papers by Verónica Martín-Gómez in
Current site
Google Scholar
PubMed
Close
,
Emilio Hernández-Garcia Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, Palma de Mallorca, Spain

Search for other papers by Emilio Hernández-Garcia in
Current site
Google Scholar
PubMed
Close
,
Marcelo Barreiro Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay

Search for other papers by Marcelo Barreiro in
Current site
Google Scholar
PubMed
Close
, and
Cristóbal López Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, Palma de Mallorca, Spain

Search for other papers by Cristóbal López in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sea surface temperature (SST) anomalies over the tropical oceans are able to generate extratropical atmospheric circulation anomalies that can induce rainfall variability and changes in the sources of moisture. The work reported here evaluates the interdecadal changes in the moisture sources for southeastern South America (SESA) during austral summer, and it is divided into two complementary parts. In the first part the authors construct a climate network to detect synchronization periods among the tropical oceans and the precipitation over SESA. Afterward, taking into account these results, the authors select two periods with different degrees of synchronization to compare the spatial distribution of the SESA moisture sources.

Results show that during the last century there were three synchronization periods among the tropical oceans and the precipitation over SESA (during the 1930s, 1970s, and 1990s) and suggest that the main moisture sources of SESA are the recycling over the region, the central-eastern shore of Brazil together with the surrounding Atlantic Ocean, and the southwestern South Atlantic surrounding the SESA domain. Comparison of SESA moisture sources for the 1980s (a period of nonsignificant synchronization) and the 1990s (a synchronized period) shows that the principal differences are in the intensity of the recycling and in the strength of the central-eastern shore of Brazil. Moreover, the authors find that a region centered at (20°S, 300°E) is a moisture source for SESA only during the 1990s. These differences can be associated with the development of a low-level anticyclonic (cyclonic) anomaly circulation over central-eastern Brazil that favors the transport of moisture from central Brazil (central-eastern shore of Brazil) toward SESA in the 1990s (1980s).

Corresponding author address: V. Martín-Gómez, Instituto de Física, Universidad de la República de Uruguay, Iguá 4225, Montevideo 11400, Uruguay. E-mail: vero.martin.gomez@gmail.com

Abstract

Sea surface temperature (SST) anomalies over the tropical oceans are able to generate extratropical atmospheric circulation anomalies that can induce rainfall variability and changes in the sources of moisture. The work reported here evaluates the interdecadal changes in the moisture sources for southeastern South America (SESA) during austral summer, and it is divided into two complementary parts. In the first part the authors construct a climate network to detect synchronization periods among the tropical oceans and the precipitation over SESA. Afterward, taking into account these results, the authors select two periods with different degrees of synchronization to compare the spatial distribution of the SESA moisture sources.

Results show that during the last century there were three synchronization periods among the tropical oceans and the precipitation over SESA (during the 1930s, 1970s, and 1990s) and suggest that the main moisture sources of SESA are the recycling over the region, the central-eastern shore of Brazil together with the surrounding Atlantic Ocean, and the southwestern South Atlantic surrounding the SESA domain. Comparison of SESA moisture sources for the 1980s (a period of nonsignificant synchronization) and the 1990s (a synchronized period) shows that the principal differences are in the intensity of the recycling and in the strength of the central-eastern shore of Brazil. Moreover, the authors find that a region centered at (20°S, 300°E) is a moisture source for SESA only during the 1990s. These differences can be associated with the development of a low-level anticyclonic (cyclonic) anomaly circulation over central-eastern Brazil that favors the transport of moisture from central Brazil (central-eastern shore of Brazil) toward SESA in the 1990s (1980s).

Corresponding author address: V. Martín-Gómez, Instituto de Física, Universidad de la República de Uruguay, Iguá 4225, Montevideo 11400, Uruguay. E-mail: vero.martin.gomez@gmail.com
Save
  • Alexander, M., A. I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreoli, R. V., and M. T. Kayano, 2005: ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes. Int. J. Climatol., 25, 20172030, doi:10.1002/joc.1222.

    • Search Google Scholar
    • Export Citation
  • Barreiro, M., 2010: Influence of ENSO and South Atlantic Ocean on climate predictability over southeastern South America. Climate Dyn., 35, 14931508, doi:10.1007/s00382-009-0666-9.

    • Search Google Scholar
    • Export Citation
  • Barreiro, M., and A. Tippmann, 2008: Atlantic modulation of El Niño influence on summertime rainfall over southeastern South America. Geophys. Res. Lett., 35, L16704, doi:10.1029/2008GL035019.

    • Search Google Scholar
    • Export Citation
  • Barreiro, M., N. Diaz, and M. Remon, 2014: Role of the oceans and land–atmosphere interaction on summertime interdecadal variability over northern Argentina. Climate Dyn., 42, 17331753, doi:10.1007/s00382-014-2088-6.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and V. R. Barros, 2002: The hydrologic cycle of the La Plata basin in South America. J. Hydrometeor., 3, 630645, doi:10.1175/1525-7541(2002)003<0630:THCOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., D. Entekhabi, and P. S. Eagleson, 1993: Estimation of continental precipitation recycling. J. Climate, 6, 10771089, doi:10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Castillo, R., R. Nieto, A. Drumond, and L. Gimeno, 2014: The role of the ENSO cycle in the modulation of moisture transport from major oceanic moisture sources. Water Resour. Res., 50, 10461058, doi:10.1002/2013WR013900.

    • Search Google Scholar
    • Export Citation
  • Chan, S. C., S. K. Behera, and T. Yamagata, 2008: Indian Ocean dipole influence on South American rainfall. Geophys. Res. Lett., 35, L14S12, doi:10.1029/2008GL034204.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Diaz, A. F., C. D. Studzinski, and C. R. Mechoso, 1998: Relationships between precipitation anomalies in Uruguay and southern Brazil and sea surface temperature in the Pacific and Atlantic Oceans. J. Climate, 11, 251271, doi:10.1175/1520-0442(1998)011<0251:RBPAIU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., K. L. Brubaker, and T. DelSole, 2009: Import and export of atmospheric water vapor between nations. J. Hydrol., 365, 1122, doi:10.1016/j.jhydrol.2008.11.016.

    • Search Google Scholar
    • Export Citation
  • Drumond, A., R. Nieto, L. Gimeno, and T. Ambrizzi, 2008: A Lagrangian identification of major sources of moisture over central Brazil and La Plata basin. J. Geophys. Res., 113, D14128, doi:10.1029/2007JD009547.

    • Search Google Scholar
    • Export Citation
  • Drumond, A., J. Marengo, T. Ambrizzi, R. Nieto, L. Moreira, and L. Gimeno, 2014: The role of the Amazon basin moisture in the atmospheric branch of the hydrological cycle: A Lagrangian analysis. Hydrol. Earth Syst. Sci., 18, 25772598, doi:10.5194/hess-18-2577-2014.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J. Geophys. Res., 102, 929945, doi:10.1029/96JC03296.

    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., V. R. Barros, and M. E. Doyle, 2000: Climate variability in southern South America associated with El Niño and La Niña events. J. Climate, 13, 3558, doi:10.1175/1520-0442(2000)013<0035:CVISSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., 2005: Characteristics and spatio-temporal variability of the Amazon River basin water budget. Climate Dyn., 24, 1122, doi:10.1007/s00382-004-0461-6.

    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., and F. Dominguez, 2014: Sources of atmospheric moisture for the La Plata River basin. J. Climate, 27, 67376753, doi:10.1175/JCLI-D-14-00022.1.

    • Search Google Scholar
    • Export Citation
  • Martín-Gómez, V., and M. Barreiro, 2016: Analysis of ocean’s influence on spring time rainfall variability over southeastern South America during the 20th century. Int. J. Climatol., 36, 13441358, doi:10.1002/joc.4428.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., P. Mcintosh, L. Pigot, and M. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880, doi:10.1175/JCLI4152.1.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1999: Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res., 104, 19571972, doi:10.1029/1998JD200026.

    • Search Google Scholar
    • Export Citation
  • Quadro, M. F., E. H. Berbery, M. S. Dias, D. L. Herdies, and L. G. Gonçalves, 2013: The atmospheric water cycle over South America as seen in the new generation of global reanalyses. AIP Conf. Proc., Berlin, Germany, American Institute of Physics, 732–735, doi:10.1063/1.4804874.

  • Rodriguez-Fonseca, B., I. Polo, J. Garcia-Serrano, T. Losada, E. Mohino, C. R. Mechoso, and F. Kucharski, 2009: Are Atlantic Niño enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, doi:10.1029/2009GL040048.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: NCEP Climate Forecast System Reanalysis (CFSR) 6-hourly products, January 1979 to December 2010. Computational and Information Systems Laboratory, National Center for Atmospheric Research, doi:10.5065/D69K487J.

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and P. Chang, 2000: Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J. Climate, 13, 21772194, doi:10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, M. Bruno, and M. Ziese, 2011: GPCC full data reanalysis, version 6.0 at 1.0°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Global Precipitation Climatology Centre, doi:10.5676/DWD_GPCC/FD_M_V6_100.

  • Seager, R., N. Naik, W. Baethgen, A. Robertson, Y. Kushnir, J. Nakamura, and S. Jurburg, 2010: Tropical oceanic causes of interannual to multidecadal precipitation variability in southeast South America over the past century. J. Climate, 23, 55175539, doi:10.1175/2010JCLI3578.1.

    • Search Google Scholar
    • Export Citation
  • Silva, G. A., T. Ambrizzi, and J. A. Marengo, 2009: Observational evidences on the modulation of the South American low level jet east of the Andes according the ENSO variability. Ann. Geophys., 27, 645657, doi:10.5194/angeo-27-645-2009.

    • Search Google Scholar
    • Export Citation
  • Silva, V. B. S., and V. E. Kousky, 2012: The South American monsoon system: Climatology and variability. Modern Climatology, S.-Y. Wang, Ed., InTech, 123–152, doi:10.5772/38565.

  • Silvestri, G. E., 2004: El Niño signal variability in the precipitation over southeastern South America during the austral summer. Geophys. Res. Lett., 31, L18206, doi:10.1029/2004GL020590.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2004: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeor., 5, 656678, doi:10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2005: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Earth’s river catchments, ocean basins, and moisture transports between them. J. Hydrometeor., 6, 961984, doi:10.1175/JHM470.1.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474, doi:10.5194/acp-5-2461-2005.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., K. Swanson, and S. Kravtsov, 2007: A new dynamical mechanism for major climate shifts. Geophys. Res. Lett., 34, L13705, doi:10.1029/2007GL030288.

    • Search Google Scholar
    • Export Citation
  • Vera, C., G. Silvestri, V. Barros, and A. Carril, 2004: Differences in El Niño response over the Southern Hemisphere. J. Climate, 17, 17411753, doi:10.1175/1520-0442(2004)017<1741:DIENRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. Wang, 2014: Different impacts of various El Niño events on the Indian Ocean dipole. Climate Dyn., 42, 9911005, doi:10.1007/s00382-013-1711-2.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004: Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17, 40194031, doi:10.1175/1520-0442(2004)017<4019:UTIOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normal during 1871–2000. J. Climate, 16, 16011612, doi:10.1175/1520-0442-16.10.1601.

    • Search Google Scholar
    • Export Citation
  • Yoo, G. H., J. S. Kug, J. Y. Park, and F. F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, doi:10.1038/ngeo1686.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6, 15671586, doi:10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zemp, D. C., C. F. Schleussner, H. M. J. Barbosa, R. J. Van der Ent, J. F. Donges, J. Heinke, G. Sampaio, and A. Rammig, 2014: On the importance of cascading moisture recycling in South America. Atmos. Chem. Phys., 14, 13 33713 359, doi:10.5194/acp-14-13337-2014.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 289 69 6
PDF Downloads 128 40 4