Radiative Impacts of the 2011 Abrupt Drops in Water Vapor and Ozone in the Tropical Tropopause Layer

Daniel M. Gilford Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Daniel M. Gilford in
Current site
Google Scholar
PubMed
Close
,
Susan Solomon Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Susan Solomon in
Current site
Google Scholar
PubMed
Close
, and
Robert W. Portmann National Oceanic and Atmospheric Administration/Earth System Research Laboratory/Chemical Sciences Division, Boulder, Colorado

Search for other papers by Robert W. Portmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An abrupt drop in tropical tropopause layer (TTL) water vapor, similar to that observed in 2000, recently occurred in 2011, and was concurrent with reductions in TTL temperature and ozone. Previous studies have indicated that such large water vapor variability can have significant radiative impacts. This study uses Aura Microwave Limb Sounder observations, the Stratospheric Water Vapor and Ozone Satellite Homogenized dataset, and two radiative transfer models to examine the radiative effects of the observed changes in TTL water vapor and ozone on TTL temperatures and global radiative forcing (RF). The analyses herein suggest that quasi-isentropic poleward propagation of TTL water vapor reductions results in a zonal-mean structure with “wings” of extratropical water vapor reductions, which account for about half of the 2011 abrupt drop global radiative impact. RF values associated with the mean water vapor concentrations differences between 2012/13 and 2010/11 are between −0.01 and −0.09 W m−2, depending upon the altitude above which perturbations are considered. TTL water vapor and ozone variability during this period jointly lead to a transient radiative cooling of ~0.25–0.5 K in layers below the tropopause. The 2011 abrupt drop also prolonged the reduction in stratospheric water vapor that followed the 2000 abrupt drop, providing a longer-term radiative forcing of climate. Water vapor concentrations from 2005 to 2013 are lower than those from 1990 to 1999, resulting in a RF between these periods of about −0.045 W m−2, approximately 12% as large as, but of opposite sign to, the concurrent estimated CO2 forcing.

Corresponding author address: Daniel M. Gilford, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139. Email: dgilford@mit.edu

Abstract

An abrupt drop in tropical tropopause layer (TTL) water vapor, similar to that observed in 2000, recently occurred in 2011, and was concurrent with reductions in TTL temperature and ozone. Previous studies have indicated that such large water vapor variability can have significant radiative impacts. This study uses Aura Microwave Limb Sounder observations, the Stratospheric Water Vapor and Ozone Satellite Homogenized dataset, and two radiative transfer models to examine the radiative effects of the observed changes in TTL water vapor and ozone on TTL temperatures and global radiative forcing (RF). The analyses herein suggest that quasi-isentropic poleward propagation of TTL water vapor reductions results in a zonal-mean structure with “wings” of extratropical water vapor reductions, which account for about half of the 2011 abrupt drop global radiative impact. RF values associated with the mean water vapor concentrations differences between 2012/13 and 2010/11 are between −0.01 and −0.09 W m−2, depending upon the altitude above which perturbations are considered. TTL water vapor and ozone variability during this period jointly lead to a transient radiative cooling of ~0.25–0.5 K in layers below the tropopause. The 2011 abrupt drop also prolonged the reduction in stratospheric water vapor that followed the 2000 abrupt drop, providing a longer-term radiative forcing of climate. Water vapor concentrations from 2005 to 2013 are lower than those from 1990 to 1999, resulting in a RF between these periods of about −0.045 W m−2, approximately 12% as large as, but of opposite sign to, the concurrent estimated CO2 forcing.

Corresponding author address: Daniel M. Gilford, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139. Email: dgilford@mit.edu
Save
  • Bandoro, J., S. Solomon, A. Donohoe, D. W. J. Thompson, and B. D. Santer, 2014: Influences of the Antarctic ozone hole on Southern Hemisphere summer climate change. J. Climate, 27, 62456264, doi:10.1175/JCLI-D-13-00698.1.

    • Search Google Scholar
    • Export Citation
  • Brasseur, G., and S. Solomon, 1986: Aeronomy of the Middle Atmosphere. Springer, 452 pp.

  • Bretherton, C., M. Widmann, V. Dymnikov, J. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., 1992: Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res., 97, 76037612, doi:10.1029/92JD00291.

    • Search Google Scholar
    • Export Citation
  • Butler, J. H., and S. A. Montzka, 2015: The NOAA Annual Greenhouse Gas Index (AGGI). [Available online at http://www.esrl.noaa.gov/gmd/aggi/aggi.html.]

  • Chae, J. H., and S. C. Sherwood, 2007: Annual temperature cycle of the tropical tropopause: A simple model study. J. Geophys. Res., 112, D19111, doi:10.1029/2006JD007956.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., 1998: A global signature of enhanced shortwave absorption by clouds. J. Geophys. Res., 103, 31 66931 679, doi:10.1029/1998JD200022.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., J. K. Hackney, and D. P. Edwards, 2002: An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model. J. Geophys. Res., 107, 4664, doi:10.1029/2001JD001365.

    • Search Google Scholar
    • Export Citation
  • Conley, A. J., J.-F. Lamarque, F. Vitt, W. D. Collin, and J. Kiehl, 2013: PORT, a CESM tool for the diagnosis of radiative forcing. Geosci. Model Dev., 6, 469476, doi:10.5194/gmd-6-469-2013.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and K. H. Rosenlof, 2013: SWOOSH: Stratospheric water and ozone satellite homogenized data set. [Available online at http://www.esrl.noaa.gov/csd/groups/csd8/swoosh/.]

  • Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, and K. H. Rosenlof, 2013: Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA, 110, 18 08718 091, doi:10.1073/pnas.1310344110.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, K. H. Rosenlof, and J.-P. Vernier, 2014: Variations of stratospheric water vapor over the past three decades. J. Geophys. Res. Atmos., 119, 12 58812 598, doi:10.1002/2014JD021712.

    • Search Google Scholar
    • Export Citation
  • Dhomse, S., M. Weber, and J. Burrows, 2008: The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor. Atmos. Chem. Phys., 8, 471480, doi:10.5194/acp-8-471-2008.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair, 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci., 37, 22652297, doi:10.1175/1520-0469(1980)037<2265:SSTPIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., M. Loewenstein, J. Podolske, S. J. Oltmans, and M. Proffitt, 1999: A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements. J. Geophys. Res., 104 (D18), 22 09522 102, doi:10.1029/1999JD900404.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., S. J. Oltmans, and A. M. Thompson, 2000: Tropical convective outflow and near surface equivalent potential temperatures. Geophys. Res. Lett., 27, 25492552, doi:10.1029/2000GL011524.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., P. Bernath, C. Boone, G. Lesins, N. Livesey, A. M. Thompson, K. Walker, and J. C. Witte, 2006: Seasonal cycles of O3, CO, and convective outflow at the tropical tropopause. Geophys. Res. Lett., 33, L16802, doi:10.1029/2006GL026602.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 1997: Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res., 102, 10 84110 855, doi:10.1029/96JD03510.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26, 33093312, doi:10.1029/1999GL010487.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 2002: Assessing the climate impacts of trends in stratospheric water vapour. Geophys. Res. Lett., 29, 10861089, doi:10.1029/2001GL013909.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., R. S. Freckleton, and K. P. Shine, 1997: On aspects of the concept of radiative forcing. Climate Dyn., 13, 547560, doi:10.1007/s003820050182.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., P. H. Haynes, and P. M. Forster, 2011: The annual cycle in lower stratospheric temperatures revisited. Atmos. Chem. Phys., 11, 37013711, doi:10.5194/acp-11-3701-2011.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2004: Radiation balance of the tropical tropopause layer. J. Geophys. Res., 109, D07103, doi:10.1029/2003JD004190.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., D. W. J. Thompson, and P. M. Forster, 2009: On the role of radiative processes in stratosphere–troposphere coupling. J. Climate, 22, 41544161, doi:10.1175/2009JCLI2756.1.

    • Search Google Scholar
    • Export Citation
  • Harries, J. E., and Coauthors, 1996: Validation of measurements of water vapor from the Halogen Occultation Experiment (HALOE). J. Geophys. Res., 101 (D6), 10 20510 216, doi:10.1029/95JD02933.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and Coauthors, 2013: SPARC data initiative: Comparison of water vapor climatologies from international satellite limb sounders. J. Geophys. Res. Atmos., 118, 11 82411 846, doi:10.1002/jgrd.50752.

    • Search Google Scholar
    • Export Citation
  • Hofmann, D. J., J. H. Butler, E. J. Dlugokencky, J. W. Elkins, K. Masarie, S. A. Montzka, and P. Tans, 2006: The role of carbon dioxide in climate forcing from 1979 to 2004: Introduction of the Annual Greenhouse Gas Index. Tellus, 58B, 614619, doi:10.1111/j.1600-0889.2006.00201.x.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. J. Stocker et al., Eds., Cambridge University Press, 1535 pp. [Available online at https://www.ipcc.ch/report/ar5/wg1/.]

  • Joshi, M. M., and G. S. Jones, 2009: The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions. Atmos. Chem. Phys., 9, 61096118, doi:10.5194/acp-9-6109-2009.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., M. J. Webb, A. C. Maycock, and M. Collins, 2010: Stratospheric water vapour and high climate sensitivity in a version of the HadSM3 climate model. Atmos. Chem. Phys., 10, 71617167, doi:10.5194/acp-10-7161-2010.

    • Search Google Scholar
    • Export Citation
  • Konopka, P., J Grooß, F. Plöger, and R. Müller, 2009: Annual cycle of horizontal in-mixing into the lower tropical stratosphere. J. Geophys. Res., 114, D19111, doi:10.1029/2009JD011955.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J., and S. Solomon, 2010: Impact of changes in climate and halocarbons on recent lower stratosphere ozone and temperature trends. J. Climate, 23, 25992611, doi:10.1175/2010JCLI3179.1.

    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2011: Version 3.3 level 2 data quality and description document. Doc. JPL D-33509, Jet Propulsion Laboratory, Pasadena, CA, 156 pp. [Available online at http://mls.jpl.nasa.gov/data/v3-3_data_quality_document.pdf.]

  • Maycock, A. C., and K. P. Shine, 2012: Stratospheric water vapor and climate: Sensitivity to the representation in radiation codes. J. Geophys. Res., 117, D13102, doi:10.1029/2012JD017484.

    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., K. P. Shine, and M. M. Joshi, 2011: The temperature response to stratospheric water vapour changes. Quart. J. Roy. Meteor. Soc., 137, 10701082, doi:10.1002/qj.822.

    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., M. M. Joshi, K. P. Shine, S. M. Davis, and K. H. Rosenlof, 2014: The potential impact of changes in lower stratospheric water vapour on stratospheric temperatures over the past 30 years. Quart. J. Roy. Meteor. Soc., 140, 21762185, doi:10.1002/qj.2287.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J. J., 1991: Radiation and cloud radiative properties in the ECMWF operational forecast model. J. Geophys. Res., 96, 91219132, doi:10.1029/89JD01597.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101, 39894006, doi:10.1029/95JD03422.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., T. J. Dunkerton, M. E. McIntyre, E. A. Ray, P. H. Haynes, and J. M. Russell III, 1998: Vertical velocity, vertical diffusion, and dilution by midlatitude air in the tropical lower stratosphere. J. Geophys. Res., 103 (D8), 86518666, doi:10.1029/98JD00203.

    • Search Google Scholar
    • Export Citation
  • NASA, 2006: Missions: Aura. Earth Science Reference Handbook, C. L. Parkinson, A. Ward, and M. D. King, Eds., NASA, 101–117.

  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp. [Available online at www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.]

  • Ploeger, F., and Coauthors, 2011: Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL). Atmos. Chem. Phys., 11, 407419, doi:10.5194/acp-11-407-2011.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and S. Solomon, 2012: The signature of ozone depletion on tropical temperature trends, as revealed by their seasonal cycle in model integrations with single forcings. J. Geophys. Res., 117, D17102, doi:10.1029/2012JD017719.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and R. E. Dickinson, 1979: The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the Earth–troposphere system. J. Atmos. Sci., 36, 10841104, doi:10.1175/1520-0469(1979)036<1084:TROSOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and P. Downey, 1986: A nonisothermal emissivity and absorptivity formulation for water vapor. J. Geophys. Res., 91, 86498666, doi:10.1029/JD091iD08p08649.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169176, doi:10.1038/ngeo1733.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2015: Variability of zonal mean tropical temperatures derived from a decade of GPS radio occultation data. J. Atmos. Sci., 72, 12611275, doi:10.1175/JAS-D-14-0216.1.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and R. Stolarski, 2002: Changes in column ozone correlated with stratospheric EP flux. J. Meteor. Soc. Japan, 80, 849862, doi:10.2151/jmsj.80.849.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, H. Vömel, G. E. Nedoluha, and P. Forster, 2006: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer–Dobson circulation. J. Geophys. Res., 111, D12312, doi:10.1029/2005JD006744.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and Coauthors, 2009: An update of observed stratospheric temperature trends. J. Geophys. Res., 114, D02107, doi:10.1029/2008JD010421.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., and G. C. Reid, 2008: Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection. J. Geophys. Res., 113, D06107, doi:10.1029/2007JD009109.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., A. F. Tuck, K. K. Kelly, J. M. Russell III, and M. P. McCormick, 1997: Hemispheric asymmetries in water vapor and inferences about transport in the lower stratosphere. J. Geophys. Res., 102 (D11), 13 21313 234, doi:10.1029/97JD00873.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. Boyle, D. J. Gaffen, J. Hnilo, D. Nychka, D. Parker, and K. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105 (D6), 73377356, doi:10.1029/1999JD901105.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., and Coauthors, 2008: QBO and annual cycle variations in tropical lower stratosphere gases from HALOE and Aura MLS observations. J. Geophys. Res., 113, D05301, doi:10.1029/2007JD008678.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., 2001: Climate and ozone response to increased stratospheric water vapor. Geophys. Res. Lett., 28, 15511554, doi:10.1029/1999GL011197.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Stuber, N., M. Ponater, and R. Sausen, 2001: Is the climate sensitivity of ozone perturbations enhanced by stratospheric water vapor feedback? Geophys. Res. Lett., 28, 28872890, doi:10.1029/2001GL013000.

    • Search Google Scholar
    • Export Citation
  • Tegtmeier, S., and Coauthors, 2013: SPARC data initiative: A comparison of ozone climatologies from international satellite limb sounders. J. Geophys. Res. Atmos., 118, 12 22912 247, doi:10.1002/2013JD019877.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2009: Understanding recent stratospheric climate change. J. Climate, 22, 19341943, doi:10.1175/2008JCLI2482.1.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., and G. C. Craig, 2002: On the temperature structure of the tropical substratosphere. J. Geophys. Res., 107 (D2), doi:10.1029/2001JD000448.

    • Search Google Scholar
    • Export Citation
  • Tian, W., M. P. Chipperfield, and L. Daren, 2009: Impact of increasing stratospheric water vapor on ozone depletion and temperature change. Adv. Atmos. Sci., 26, 423437, doi:10.1007/s00376-009-0423-3.

    • Search Google Scholar
    • Export Citation
  • Urban, J., S. Lossow, G. Stiller, and W. Read, 2014: Another drop in water vapor. Eos, Trans. Amer. Geophys. Union, 95, 245246, doi:10.1002/2014EO270001.

    • Search Google Scholar
    • Export Citation
  • Zhong, W. Y., and J. D. Haigh, 1995: Improved broad-band emissivity parameterization for water vapor cooling rate calculations. J. Atmos. Sci., 52, 124138, doi:10.1175/1520-0469(1995)052<0124:IBEPFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 555 137 26
PDF Downloads 279 75 4