Decadal-to-Centennial Variability of Salinity in the Baltic Sea

Semjon Schimanke Swedish Meteorological and Hydrological Institute, Norrköping, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Semjon Schimanke in
Current site
Google Scholar
PubMed
Close
and
H. E. Markus Meier Leibniz Institute for Baltic Sea Research, Rostock, Germany, and Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

Search for other papers by H. E. Markus Meier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A transient multicentury simulation mimicking natural variability has been performed for the Baltic Sea. The simulation is used for investigations of long-term trends of salinity in the Baltic Sea with special focus on periods of salinity reduction. Periods with decreasing salinity over 10 yr are found to appear approximately once per century. Considering extended periods of salinity reduction, as observed from 1976 to 1992, such events are found to be quite exceptional. Based on the climate simulation, a return period of 200 yr is estimated. River discharge, net precipitation (precipitation minus evaporation), and zonal wind are identified as the most important drivers for salinity variations in the Baltic Sea. For multidecadal periods, almost two-thirds of the salinity variability can be explained by annual means of river discharge, precipitation, both wind components, temperature, and the North Atlantic Oscillation, when multilinear regression techniques are used. However, the evaluation of wavelet coherences among the time series highlights that this relationship is not constant in time. At least three periods exist, each spanning roughly 50 yr, where the coherence between salinity and runoff as the common main driver is rather weak. This indicates that the importance of river discharge might be limited for certain periods, and drivers such as zonal wind may become more important. Finally, the variability of the Baltic Sea salinity shows increased power on time scales of 100 yr and longer. Such periodicity has never been shown for Baltic Sea salinity, and the driving mechanism remains unclear.

Denotes Open Access content.

Corresponding author address: Semjon Schimanke, Swedish Meteorological and Hydrological Institute, SE-601 76 Norrköping, Sweden. E-mail: semjon.schimanke@smhi.se

Abstract

A transient multicentury simulation mimicking natural variability has been performed for the Baltic Sea. The simulation is used for investigations of long-term trends of salinity in the Baltic Sea with special focus on periods of salinity reduction. Periods with decreasing salinity over 10 yr are found to appear approximately once per century. Considering extended periods of salinity reduction, as observed from 1976 to 1992, such events are found to be quite exceptional. Based on the climate simulation, a return period of 200 yr is estimated. River discharge, net precipitation (precipitation minus evaporation), and zonal wind are identified as the most important drivers for salinity variations in the Baltic Sea. For multidecadal periods, almost two-thirds of the salinity variability can be explained by annual means of river discharge, precipitation, both wind components, temperature, and the North Atlantic Oscillation, when multilinear regression techniques are used. However, the evaluation of wavelet coherences among the time series highlights that this relationship is not constant in time. At least three periods exist, each spanning roughly 50 yr, where the coherence between salinity and runoff as the common main driver is rather weak. This indicates that the importance of river discharge might be limited for certain periods, and drivers such as zonal wind may become more important. Finally, the variability of the Baltic Sea salinity shows increased power on time scales of 100 yr and longer. Such periodicity has never been shown for Baltic Sea salinity, and the driving mechanism remains unclear.

Denotes Open Access content.

Corresponding author address: Semjon Schimanke, Swedish Meteorological and Hydrological Institute, SE-601 76 Norrköping, Sweden. E-mail: semjon.schimanke@smhi.se
Save
  • Collins, M., S. F. B. Tett, and C. Cooper, 2001: The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 17, 61–81, doi:10.1007/s003820000094.

    • Search Google Scholar
    • Export Citation
  • Feistel, R., G. Nausch, and N. Wasmund, 2008: State and Evolution of the Baltic Sea, 1952–2005: A Detailed 50-Year Survey of Meteorology and Climate, Physics, Chemistry, Biology, and Marine Environment. J. Wiley and Sons, 712 pp.

  • Fonselius, S., and J. Valderrama, 2003: One hundred years of hydrographic measurements in the Baltic Sea. J. Sea Res., 49, 229–241, doi:10.1016/S1385-1101(03)00035-2.

    • Search Google Scholar
    • Export Citation
  • Gräwe, U., R. Friedland, and H. Burchard, 2013: The future of the western Baltic Sea: Two possible scenarios. Ocean Dyn., 63, 901–921, doi:10.1007/s10236-013-0634-0.

    • Search Google Scholar
    • Export Citation
  • Gräwe, U., M. Naumann, V. Mohrholz, and H. Burchard, 2015: Anatomizing one of the largest saltwater inflows into the Baltic Sea in December 2014. J. Geophys. Res. Oceans, 120, 7676–7697, doi:10.1002/2015JC011269.

    • Search Google Scholar
    • Export Citation
  • Grinsted, A., J. C. Moore, and S. Jevrejeva, 2004: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys., 11, 561–566, doi:10.5194/npg-11-561-2004.

    • Search Google Scholar
    • Export Citation
  • Gustafsson, B., 1997: Interaction between Baltic Sea and North Sea. Dtsch. Hydrogr. Z., 49, 165–183, doi:10.1007/BF02764031.

  • Gustafsson, B., 2000: Time-dependent modeling of the Baltic entrance area. 2. Water and salt exchange of the Baltic Sea. Estuaries, 23, 253–266, doi:10.2307/1352831.

    • Search Google Scholar
    • Export Citation
  • Hagen, E., and R. Feistel, 2005: Climatic turning points and regime shifts in the Baltic Sea region: The Baltic winter index (WIBIX) 1659–2002. Boreal Environ. Res., 10, 211–224.

    • Search Google Scholar
    • Export Citation
  • Hansson, D., and E. Gustafsson, 2011: Salinity and hypoxia in the Baltic Sea since A.D. 1500. J. Geophys. Res., 116, C03027, doi:10.1029/2010JC006676.

    • Search Google Scholar
    • Export Citation
  • Hünicke, B., E. Zorita, and S. Haeseler, 2010: Baltic Holocene climate and regional sea-level change: A statistical analysis of observations, reconstructions and simulations within present and past analogues for future changes. Final Rep. of the DFG Research Unit SINCOS-2, 70 pp. [Available online at http://www.hzg.de/imperia/md/content/hzg/zentrale_einrichtungen/bibliothek/berichte/gkss_berichte_2010/gkss_2010_2.pdf.]

  • Kaspar, F., T. Spangehl, and U. Cubasch, 2007: Northern Hemisphere winter storm tracks of the Eemian interglacial and the last glacial inception. Climate Past, 3, 181–192, doi:10.5194/cp-3-181-2007.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. Stainforth, D. J. Webb, and S. M. Paterson, 1991: The development of a free-surface Bryan–Cox–Semtner ocean model. J. Phys. Oceanogr., 21, 1333–1348, doi:10.1175/1520-0485(1991)021<1333:TDOAFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kjellström, E., J. Brandefelt, J.-O. Näslund, B. Smith, G. Strandberg, A. H. L. Voelker, and B. Wohlfarth, 2010: Simulated climate conditions in Europe during the Marine Isotope Stage 3 stadial. Boreas, 39, 436–456, doi:10.1111/j.1502-3885.2010.00143.x.

    • Search Google Scholar
    • Export Citation
  • Kjellström, E., G. Nikulin, U. Hansson, G. Strandberg, and A. Ullerstig, 2011: 21st century changes in the European climate: Uncertainties derived from an ensemble of regional climate model simulations. Tellus, 63A, 24–40, doi:10.1111/j.1600-0870.2010.00475.x.

    • Search Google Scholar
    • Export Citation
  • Lass, H. U., and W. Matthäus, 1996: On temporal wind variations forcing salt water inflows into the Baltic Sea. Tellus, 48A, 663–671, doi:10.1034/j.1600-0870.1996.t01-4-00005.x.

    • Search Google Scholar
    • Export Citation
  • Lean, J., J. Beer, and R. Bradley, 1995: Reconstruction of solar irradiance since 1610: Implications for climate change. Geophys. Res. Lett., 22, 3195–3198, doi:10.1029/95GL03093.

    • Search Google Scholar
    • Export Citation
  • Legutke, S., and R. Voss, 1999: The Hamburg Atmosphere–Ocean Coupled Circulation Model ECHO-G. DKRZ Tech. Rep. 18, 62 pp. [Available online at http://mms.dkrz.de/pdf/klimadaten/models/ReportNo.18.pdf.]

  • Matthäus, W., and H. Franck, 1992: Characteristics of major Baltic inflows—A statistical analysis. Cont. Shelf Res., 12, 1375–1400, doi:10.1016/0278-4343(92)90060-W.

    • Search Google Scholar
    • Export Citation
  • Meier, H. E. M., 2005: Modeling the age of Baltic seawater masses: Quantification and steady state sensitivity experiments. J. Geophys. Res., 110, C02006, doi:10.1029/2004JC002607.

    • Search Google Scholar
    • Export Citation
  • Meier, H. E. M., 2006: Baltic Sea climate in the late twenty-first century: A dynamical downscaling approach using two global models and two emission scenarios. Climate Dyn., 27, 39–68, doi:10.1007/s00382-006-0124-x.

    • Search Google Scholar
    • Export Citation
  • Meier, H. E. M., 2007: Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuarine Coastal Shelf Sci., 74, 717–734.

    • Search Google Scholar
    • Export Citation
  • Meier, H. E. M., and F. Kauker, 2003a: Modeling decadal variability of the Baltic Sea: 2. Role of freshwater inflow and large-scale atmospheric circulation for salinity. J. Geophys. Res., 108, 3368, doi:10.1029/2003JC001799.

    • Search Google Scholar
    • Export Citation
  • Meier, H. E. M., and F. Kauker, 2003b: Sensitivity of the Baltic Sea salinity to the freshwater supply. Climate Res., 24, 231–242, doi:10.3354/cr024231.

    • Search Google Scholar
    • Export Citation
  • Meier, H. E. M., R. Döscher, and T. Faxen, 2003: A multiprocessor coupled ice–ocean model for the Baltic Sea: Application to salt inflow. J. Geophys. Res., 108, 3273, doi:10.1029/2000JC000521.

    • Search Google Scholar
    • Export Citation
  • Meier, H. E. M., A. Höglund, R. Döscher, H. Andersson, U. Löptien, and E. Kjellström, 2011: Quality assessment of atmospheric surface fields over the Baltic Sea from an ensemble of regional climate model simulations with respect to ocean dynamics. Oceanologia, 53, 193–227, doi:10.5697/oc.53-1-TI.193.

    • Search Google Scholar
    • Export Citation
  • Meier, H. E. M., R. Hordoir, H. Andersson, C. Dieterich, K. Eilola, B. Gustafsson, A. Höglund, and S. Schimanke, 2012a: Modeling the combined impact of changing climate and changing socio-economic development on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Climate Dyn., 39, 2421–2441, doi:10.1007/s00382-012-1339-7.

    • Search Google Scholar
    • Export Citation
  • Meier, H. E. M., and Coauthors, 2012b: Impact of climate change on ecological quality indicators and biogeochemical fluxes in the Baltic Sea? A multi-model ensemble study. AMBIO, 41, 558–573, doi:10.1007/s13280-012-0320-3.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., S. Legutke, A. Hense, and W.-T. Kwon, 2005a: Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G—I. Near-surface temperature, precipitation and mean sea level pressure. Tellus, 57A, 605–621, doi:10.1111/j.1600-0870.2005.00133.x.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., S. Legutke, A. Hense, and W.-T. Kwon, 2005b: Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G—II. El Nino Southern Oscillation and North Atlantic Oscillation. Tellus, 57A, 622–640, doi:10.1111/j.1600-0870.2005.00132.x.

    • Search Google Scholar
    • Export Citation
  • Mohrholz, V., M. Naumann, G. Nausch, S. Krüger, and U. Gräwe, 2015: Fresh oxygen for the Baltic Sea—An exceptional saline inflow after a decade of stagnation. J. Mar. Syst., 148, 152–166, doi:10.1016/j.jmarsys.2015.03.005.

    • Search Google Scholar
    • Export Citation
  • Nikulin, G., E. Kjellström, U. Hansson, G. Strandberg, and A. Ullerstig, 2011: Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus, 63A, 41–55, doi:10.1111/j.1600-0870.2010.00466.x.

    • Search Google Scholar
    • Export Citation
  • Omstedt, A., and L. Axell, 1998: Modeling the seasonal, interannual, and long-term variations of salinity and temperature in the Baltic proper. Tellus, 50A, 637–652, doi:10.1034/j.1600-0870.1998.t01-4-00005.x.

    • Search Google Scholar
    • Export Citation
  • Omstedt, A., and D. Hansson, 2006: The Baltic Sea ocean climate system memory and response to changes in the water and heat balance components. Cont. Shelf Res., 26, 236–251, doi:10.1016/j.csr.2005.11.003.

    • Search Google Scholar
    • Export Citation
  • Rodhe, J., and P. Winsor, 2002: On the influence of the freshwater supply on the Baltic Sea mean salinity. Tellus, 54A, 175–186, doi:10.1034/j.1600-0870.2002.01307.x; Corrigendum, 55, 455–456, doi:10.1034/j.1600-0870.2003.00037.x.

    • Search Google Scholar
    • Export Citation
  • Samuelsson, P., and Coauthors, 2011: The Rossby Centre regional climate model RCA3: Model description and performance. Tellus, 63A, 4–23, doi:10.1111/j.1600-0870.2010.00478.x.

    • Search Google Scholar
    • Export Citation
  • Savchuk, O. P., K. Eilola, B. G. Gustafsson, M. R. Medina, and T. Ruoho-Airola, 2012: Long term reconstruction of nutrient loads to the Baltic Sea, 1850–2006. Baltic Nest Institute Tech. Rep. 6, 9 pp. [Available online at http://www.balticnest.org/download/18.76309165137811e731dbb5/1381789019579/TR+6+-++Long-term+reconstruction+of+nutrient+loads+to+the+Baltic+Sea+1850-2006_final.pdf.]

  • Schenk, F., and E. Zorita, 2012: Reconstruction of high resolution atmospheric fields for northern Europe using analog-upscaling. Climate Past, 8, 1681–1703, doi:10.5194/cp-8-1681-2012.

    • Search Google Scholar
    • Export Citation
  • Schimanke, S., H. E. M. Meier, E. Kjellström, G. Strandberg, and R. Hordoir, 2012: The climate in the Baltic Sea region during the last millennium simulated with a regional climate model. Climate Past, 8, 1419–1433, doi:10.5194/cp-8-1419-2012.

    • Search Google Scholar
    • Export Citation
  • Schimanke, S., C. Dieterich, and H. E. M. Meier, 2014: An algorithm based on sea-level pressure fluctuations to identify major Baltic inflow events. Tellus, 66A, 23452, doi:10.3402/tellusa.v66.23452.

    • Search Google Scholar
    • Export Citation
  • Schinke, H., and W. Matthäus, 1998: On the causes of major Baltic inflows—An analysis of long time series. Cont. Shelf Res., 18, 67–97, doi:10.1016/S0278-4343(97)00071-X.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. P., 1991: The open boundary condition in the United Kingdom Fine-Resolution Antarctic Model. J. Phys. Oceanogr., 21, 1494–1499, doi:10.1175/1520-0485(1991)021<1494:TOBCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stigebrandt, A., 1983: A model for the exchange of water and salt between the Baltic and the Skagerrak. J. Phys. Oceanogr., 13, 411–427, doi:10.1175/1520-0485(1983)013<0411:AMFTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stigebrandt, A., and B. G. Gustafsson, 2003: Response of the Baltic Sea to climate change—Theory and observations. J. Sea Res., 49, 243–256, doi:10.1016/S1385-1101(03)00021-2.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., S. Manabe, and K. Y. Vinnikov, 1994: Model assessment of the role of natural variability in recent global warming. Nature, 367, 634–636, doi:10.1038/367634a0.

    • Search Google Scholar
    • Export Citation
  • Strandberg, G., J. Brandefelt, E. Kjellström, and B. Smith, 2011: High-resolution regional simulation of the last glacial maximum climate in Europe. Tellus, 63A, 107–125, doi:10.1111/j.1600-0870.2010.00485.x.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 61–78, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi:10.1256/qj.04.176.

  • Wagner, S., and Coauthors, 2007: Transient simulations, empirical reconstructions and forcing mechanism for the mid-Holocene hydrological climate in southern Patagonia. Climate Dyn., 29, 333–355, doi:10.1007/s00382-007-0229-x.

    • Search Google Scholar
    • Export Citation
  • Winsor, P., J. Rodhe, and A. Omstedt, 2001: Baltic Sea ocean climate: An analysis of 100 yr of hydrographic data with focus on the freshwater budget. Climate Res., 18, 5–15, doi:10.3354/cr018005.

    • Search Google Scholar
    • Export Citation
  • Winsor, P., J. Rodhe, and A. Omsted, 2003: Erratum: Baltic Sea ocean climate: An analysis of 100 yr of hydrographical data with focus on the freshwater budget. Climate Res., 25, 183–183.

    • Search Google Scholar
    • Export Citation
  • Zorita, E., and A. Laine, 2000: Dependence of salinity and oxygen concentrations in the Baltic Sea on large-scale atmospheric circulation. Climate Res., 14, 25–41, doi:10.3354/cr014025.

    • Search Google Scholar
    • Export Citation
  • Zorita, E., J. F. Gonzalez-Rouco, H. von Storch, J. P. Montavez, and F. Valero, 2005: Natural and anthropogenic modes of surface temperature variations in the last thousand years. Geophys. Res. Lett., 32, L08707, doi:10.1029/2004GL021563.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 773 350 51
PDF Downloads 250 49 2