What is the Role of Sea Surface Temperature in Modulating Cloud and Precipitation Properties over the Southern Ocean?

Yi Huang School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
Australian Research Council Centre of Excellence for Climate System Science, Monash University, Melbourne, Victoria, Australia

Search for other papers by Yi Huang in
Current site
Google Scholar
PubMed
Close
,
Steven T. Siems School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
Australian Research Council Centre of Excellence for Climate System Science, Monash University, Melbourne, Victoria, Australia

Search for other papers by Steven T. Siems in
Current site
Google Scholar
PubMed
Close
,
Michael J. Manton School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia

Search for other papers by Michael J. Manton in
Current site
Google Scholar
PubMed
Close
,
Daniel Rosenfeld Institute of Earth Sciences, Hebrew University, Jerusalem, Israel

Search for other papers by Daniel Rosenfeld in
Current site
Google Scholar
PubMed
Close
,
Roger Marchand Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Roger Marchand in
Current site
Google Scholar
PubMed
Close
,
Greg M. McFarquhar Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Greg M. McFarquhar in
Current site
Google Scholar
PubMed
Close
, and
Alain Protat Australian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Alain Protat in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study employs four years of spatiotemporally collocated A-Train satellite observations to investigate cloud and precipitation characteristics in relation to the underlying properties of the Southern Ocean (SO). Results show that liquid-phase cloud properties strongly correlate with the sea surface temperature (SST). In summer, ubiquitous supercooled liquid water (SLW) is observed over SSTs less than about 4°C. Cloud-top temperature (CTT) and effective radius of liquid-phase clouds generally decrease for colder SSTs, whereas the opposite trend is observed for cloud-top height, cloud optical thickness, and liquid water path. The deduced cloud depth is larger over the colder oceans. Notable differences are observed between “precipitating” and “nonprecipitating” clouds and between different ocean sectors. Using a novel joint SST–CTT histogram, two distinct liquid-phase cloud types are identified, where the retrieved particle size appears to increase with decreasing CTT over warmer water (SSTs >~7°C), while the opposite is true over colder water. A comparison with the Northern Hemisphere (NH) storm-track regions suggests that the ubiquitous SLW with markedly smaller droplet size is a unique feature for the cold SO (occurring where SSTs <~4°C), while the presence of this cloud type is much less frequent over the NH counterparts, where the SSTs are rarely colder than about 4°C at any time of the year. This study also suggests that precipitation, which has a profound influence on cloud properties, remains poorly observed over the SO with the current spaceborne sensors. Large uncertainties in precipitation properties are associated with the ubiquitous boundary layer clouds within the lowest kilometer of the atmosphere.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0768.s1.

Corresponding author address: Yi Huang, School of Mathematical Sciences, Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia. E-mail: vivian.huang@monash.edu

Abstract

This study employs four years of spatiotemporally collocated A-Train satellite observations to investigate cloud and precipitation characteristics in relation to the underlying properties of the Southern Ocean (SO). Results show that liquid-phase cloud properties strongly correlate with the sea surface temperature (SST). In summer, ubiquitous supercooled liquid water (SLW) is observed over SSTs less than about 4°C. Cloud-top temperature (CTT) and effective radius of liquid-phase clouds generally decrease for colder SSTs, whereas the opposite trend is observed for cloud-top height, cloud optical thickness, and liquid water path. The deduced cloud depth is larger over the colder oceans. Notable differences are observed between “precipitating” and “nonprecipitating” clouds and between different ocean sectors. Using a novel joint SST–CTT histogram, two distinct liquid-phase cloud types are identified, where the retrieved particle size appears to increase with decreasing CTT over warmer water (SSTs >~7°C), while the opposite is true over colder water. A comparison with the Northern Hemisphere (NH) storm-track regions suggests that the ubiquitous SLW with markedly smaller droplet size is a unique feature for the cold SO (occurring where SSTs <~4°C), while the presence of this cloud type is much less frequent over the NH counterparts, where the SSTs are rarely colder than about 4°C at any time of the year. This study also suggests that precipitation, which has a profound influence on cloud properties, remains poorly observed over the SO with the current spaceborne sensors. Large uncertainties in precipitation properties are associated with the ubiquitous boundary layer clouds within the lowest kilometer of the atmosphere.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0768.s1.

Corresponding author address: Yi Huang, School of Mathematical Sciences, Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia. E-mail: vivian.huang@monash.edu

Supplementary Materials

    • Supplemental Materials (DOCX 6.70 MB)
Save
  • Ahmad, I., and Coauthors, 2013: Long-term measurements of cloud droplet concentrations and aerosol–cloud interactions in continental boundary layer clouds. Tellus, 65B, 20138, doi:10.3402/tellusb.v65i0.20138.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B., C. Fairall, D. Thomson, A. B. White, J. B. Snider, and W. H. Schubert, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 8992, doi:10.1029/GL017i001p00089.

    • Search Google Scholar
    • Export Citation
  • Bates, T. S., B. J. Huebert, J. L. Gras, F. B. Griffiths, and P. A. Durkee, 1998: International Global Atmospheric Chemistry (IGAC) Project’s First Aerosol Characterization Experiment (ACE 1): Overview. J. Geophys. Res., 103 (D13), 16 29716 318, doi:10.1029/97JD03741.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., W. P. Menzel, R. A. Frey, D. C. Tobin, R. E. Holz, S. A. Ackerman, A. K. Heidinger, and P. Yang, 2012: MODIS cloud-top property refinements for Collection 6. J. Appl. Meteor. Climatol., 51, 11451163, doi:10.1175/JAMC-D-11-0203.1.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, doi:10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., K. D. Williams, P. Field, and A. Lock, 2012: The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: The role of midlatitude cyclone clouds. J. Climate, 25, 74677486, doi:10.1175/JCLI-D-11-00702.1.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, doi:10.1175/JCLI-D-13-00169.1.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., P. G. Hill, K. Furtado, K. D. Williams, P. R. Field, J. C. Manners, P. Hyder, and S. Kato, 2016: Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Climate, 29, 42134228, doi:10.1175/JCLI-D-15-0564.1.

    • Search Google Scholar
    • Export Citation
  • Boers, R., J. B. Jensen, and P. B. Krummel, 1998: Microphysical and short-wave radiative structure of marine stratocumulus clouds over the Southern Ocean: Summer results and seasonal differences. Quart. J. Roy. Meteor. Soc., 124, 151168, doi:10.1002/qj.49712454507.

    • Search Google Scholar
    • Export Citation
  • Burrows, S. M., C. Hoose, U. Pöschl, and M. G. Lawrence, 2013: Ice nuclei in marine air: Biogenic particles or dust? Atmos. Chem. Phys., 13, 245267, doi:10.5194/acp-13-245-2013.

    • Search Google Scholar
    • Export Citation
  • Cesana, G., D. E. Waliser, X. Jiang, and J. L. F. Li, 2015: Multi-model evaluation of cloud phase transition using satellite and reanalysis data. J. Geophys. Res. Atmos., 120, 78717892, doi:10.1002/2014JD022932.

    • Search Google Scholar
    • Export Citation
  • Cheng, A., and K.-M. Xu, 2015: Improved low-cloud simulation from the Community Atmosphere Model with an advanced third-order turbulence closure. J. Climate, 28, 57375762, doi:10.1175/JCLI-D-14-00776.1.

    • Search Google Scholar
    • Export Citation
  • Chin, M., and Coauthors, 2004: Aerosol distribution in the Northern Hemisphere during ACE-Asia: Results from global model, satellite observations, and sun photometer measurements. J. Geophys. Res., 109, D23S90, doi:10.1029/2004JD004829.

    • Search Google Scholar
    • Export Citation
  • Cho, H.-M., and Coauthors, 2015: Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans. J. Geophys. Res. Atmos., 120, 41324154, doi:10.1002/2015JD023161.

    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., G. L. Stephens, and M. D. Lebsock, 2013: Exposing biases in retrieved low cloud properties from CloudSat: A guide for evaluating observations and climate data. J. Geophys. Res. Atmos., 118, 12 12012 131, doi:10.1002/2013JD020224.

    • Search Google Scholar
    • Export Citation
  • Chubb, T. H., J. B. Jensen, S. T. Siems, and M. J. Manton, 2013: In situ observations of supercooled liquid clouds over the Southern Ocean during the HIAPER Pole-to-Pole Observation campaigns. Geophys. Res. Lett., 40, 52805285, doi:10.1002/grl.50986.

    • Search Google Scholar
    • Export Citation
  • Chubb, T. H., Y. Huang, J. Jensen, T. Campos, S. Siems, and M. Manton, 2016: Observations of high droplet number concentrations in Southern Ocean boundary layer clouds. Atmos. Chem. Phys., 16, 971987, doi:10.5194/acp-16-971-2016.

    • Search Google Scholar
    • Export Citation
  • Comstock, K., C. Bretherton, and S. Yuter, 2005: Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37923807, doi:10.1175/JAS3567.1.

    • Search Google Scholar
    • Export Citation
  • Davis, A., and A. Marshak, 2010: 3D transport of solar radiation in clouds. Rep. Prog. Phys., 73, 026801, doi:10.1088/0034-4885/73/2/026801.

    • Search Google Scholar
    • Export Citation
  • Dong, S., S. T. Gille, J. Sprintall, and C. Gentemann, 2006a: Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the Southern Ocean. J. Geophys. Res., 111, C04002, doi:10.1029/2005JC002934.

    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, and S. T. Gille, 2006b: Location of the Antarctic polar front from AMSR-E satellite sea surface temperature measurements. J. Phys. Oceanogr., 36, 20752089, doi:10.1175/JPO2973.1.

    • Search Google Scholar
    • Export Citation
  • Ellis, T. D., T. L’Ecuyer, J. M. Haynes, and G. L. Stephens, 2009: How often does it rain over the global oceans? The perspective from CloudSat. Geophys. Res. Lett., 36, L03815, doi:10.1029/2008GL036728.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., I. Koren, H. Wang, H. Xue, and W. A. Brewer, 2010: Precipitation-generated oscillations in open cellular cloud fields. Nature, 466, 849852, doi:10.1038/nature09314.

    • Search Google Scholar
    • Export Citation
  • Forbes, R. M., and M. Ahlgrimm, 2014: On the representation of high-latitude boundary layer mixed-phase cloud in the ECMWF global model. Mon. Wea. Rev., 142, 34253445, doi:10.1175/MWR-D-13-00325.1.

    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., Z. Sun, D. Bi, M. Dix, H. Yan, and A. Bodas-Salcedo, 2013: Evaluation of clouds in ACCESS using the satellite simulator package COSP: Global, seasonal and regional cloud properties. J. Geophys. Res. Atmos., 118, 732748, doi:10.1029/2012JD018469.

    • Search Google Scholar
    • Export Citation
  • Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, doi:10.1038/ngeo1863.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2012: Diurnal variability of upper ocean temperatures from microwave satellite measurements and Argo profiles. J. Geophys. Res., 117, C11027, 732748, doi:10.1029/2012JC007883.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., L. M. Polvani, and J. T. Fasullo, 2015: Reexamining the relationship between climate sensitivity and the Southern Hemisphere radiation budget in CMIP models. J. Climate, 28, 92989312, doi:10.1175/JCLI-D-15-0031.1.

    • Search Google Scholar
    • Export Citation
  • Grosvenor, D. P., and R. Wood, 2014: On the effect of solar zenith angle on MODIS cloud optical and microphysical retrievals. Atmos. Chem. Phys., 14, 72917321, doi:10.5194/acp-14-7291-2014.

    • Search Google Scholar
    • Export Citation
  • Grosvenor, D. P., T. W. Choularton, T. Lachlan-Cope, M. W. Gallagher, J. Crosier, K. N. Bower, R. S. Ladkin, and J. R. Dorsey, 2012: In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf. Atmos. Chem. Phys., 12, 11 27511 294, doi:10.5194/acp-12-11275-2012.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., and G. L. Stephens, 2007: Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat. Geophys. Res. Lett., 34, L09811, doi:10.1029/2007GL029335.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., C. Jakob, W. B. Rossow, G. Tselioudis, and J. Brown, 2011: Major characteristics of Southern Ocean cloud regimes and their effects on the energy budget. J. Climate, 24, 50615080, doi:10.1175/2011JCLI4052.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, doi:10.1175/JCLI3570.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309, doi:10.1175/2009JTECHA1280.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., S. Rodier, K. Xu, W. Sun, J. Huang, B. Lin, P. Zhai, and D. Josset, 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, D00H34, doi:10.1029/2009JD012384.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, L. B. Hande, and J. M. Haynes, 2012a: The structure of low-altitude clouds over the Southern Ocean as seen by CloudSat. J. Climate, 25, 25352546, doi:10.1175/JCLI-D-11-00131.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, A. Protat, and J. Delanoë, 2012b: A study on the low-altitude clouds over the Southern Ocean using the DARDAR-MASK. J. Geophys. Res., 117, D18204, doi:10.1029/2012JD017800.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., C. Franklin, S. T. Siems, M. J. Manton, T. Chubb, A. Lock, S. Alexander, and A. Klekociuk, 2015a: Evaluation of boundary layer cloud forecasts over the Southern Ocean in a limited-area numerical weather prediction system using in-situ, space-borne and ground-based observations. Quart. J. Roy. Meteor. Soc., 141, 22592276, doi:10.1002/qj.2519.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., A. Protat, S. T. Siems, and M. J. Manton, 2015b: A-Train observations of maritime mid-latitude storm-track cloud systems: Comparing the Southern Ocean against the North Atlantic. J. Climate, 28, 19201939, doi:10.1175/JCLI-D-14-00169.1.

    • Search Google Scholar
    • Export Citation
  • Im, E., S. L. Durden, and C. Wu, 2006: Cloud profiling radar for the CloudSat mission. Proc. 2005 IEEE Int. Radar Conf., Arlington, VA, Institute of Electrical and Electronics Engineers, 483–486, doi:10.1109/RADAR.2005.1435874.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., and B. J. Hoskins, 2004: The zonal asymmetry of the Southern Hemisphere winter storm track. J. Climate, 17, 48824892, doi:10.1175/JCLI-3232.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., S. Kinne, and O. B. Toon, 1994: Tropical cirrus cloud radiative forcing: Sensitivity studies. Geophys. Res. Lett., 21, 20232026, doi:10.1029/94GL01358.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and Coauthors, 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.

    • Search Google Scholar
    • Export Citation
  • Kanitz, T., P. Seifert, A. Ansmann, R. Engelmann, D. Althausen, C. Casiccia, and E. G. Rohwer, 2011: Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation. Geophys. Res. Lett., 38, L17802, doi:10.1029/2011GL048532.

    • Search Google Scholar
    • Export Citation
  • Kawai, H., S. Yabu, Y. Hagihara, T. Koshiro, and H. Okamoto, 2015: Characteristics of the cloud top heights of marine boundary layer clouds and the frequency of marine fog over mid-latitudes. J. Meteor. Soc. Japan, 93, 613628, doi:10.2151/jmsj.2015-045.

    • Search Google Scholar
    • Export Citation
  • Komurcu, M., and Coauthors, 2014: Intercomparison of the cloud water phase among global climate models. J. Geophys. Res., 119, 33723400, doi:10.1002/2013JD021119.

    • Search Google Scholar
    • Export Citation
  • Kristiansen, J., and J. E. Kristjansson, 1999: Shortwave cloud forcing of marine stratocumulus clouds. Phys. Chem. Earth, 24B, 225230, doi:10.1016/S1464-1909(98)00042-2.

    • Search Google Scholar
    • Export Citation
  • Kruger, O., and H. Grassl, 2011: Southern Ocean phytoplankton increases cloud albedo and reduces precipitation. Geophys. Res. Lett., 38, L08809, doi:10.1029/2011GL047116.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part I: Satellite observations. J. Atmos. Sci., 66, 29532972, doi:10.1175/2009JAS3071.1.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., G. L. Stephens, and C. Kummerow, 2008: Multisensor satellite observations of aerosol effects on warm clouds. J. Geophys. Res., 113, D15205, doi:10.1029/2008JD009876.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2009: The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. J. Atmos. Oceanic Technol., 26, 11981213, doi:10.1175/2009JTECHA1229.1.

    • Search Google Scholar
    • Export Citation
  • Luo, S., Z. Sun, X. Zheng, and Coauthors, 2015: Evaluation of ACCESS model cloud properties over the Southern Ocean area using multiple-satellite products. Quart. J. Roy. Meteor. Soc., 142, 160171, doi:10.1002/qj.2641.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., 2010: Cloud properties and radiative forcing over the maritime storm tracks of the Southern Ocean and North Atlantic derived from A-Train. J. Geophys. Res., 115, D10201, doi:10.1029/2009JD012517.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using CloudSat—An Earth orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, doi:10.1175/2007JTECHA1006.1.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, doi:10.1029/2009JD013422.

    • Search Google Scholar
    • Export Citation
  • Marchant, B., S. Platnick, K. Meyer, G. T. Arnold, and J. Riedi4, 2016: MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP. Atmos. Meas. Tech., 9, 15871599, doi:10.5194/amt-9-1587-2016.

    • Search Google Scholar
    • Export Citation
  • Mason, S., J. K. Fletcher, J. M. Haynes, C. Franklin, A. Protat, and C. Jakob, 2015: A hybrid cloud regime methodology used to evaluate Southern Ocean cloud and shortwave radiation errors in ACCESS. J. Climate, 28, 60016018, doi:10.1175/JCLI-D-14-00846.1.

    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, and D. P. Grosvenor, 2014a: Observed Southern Ocean cloud properties and shortwave reflection. Part I: Calculation of SW flux from observed cloud properties. J. Climate, 27, 88368857, doi:10.1175/JCLI-D-14-00287.1.

    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, and D. P. Grosvenor, 2014b: Observed Southern Ocean cloud properties and shortwave reflection. Part II: Phase changes and low cloud feedback. J. Climate, 27, 88588868, doi:10.1175/JCLI-D-14-00288.1.

    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., S. M. Burrows, R. Wood, D. P. Grosvenor, S. M. Elliott, P.-L. Ma, P. J. Rasch, and D. L. Hartmann, 2015a: Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo. Sci. Adv., 1, e1500157, doi:10.1126/sciadv.1500157.

    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor, 2015b: Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. J. Geophys. Res. Atmos., 120, 95399554, doi:10.1002/2015JD023603.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., R. A. Frey, and B. A. Baum, 2010: Cloud top properties and cloud phase algorithm theoretical basis document. NASA Goddard Space Flight Center Rep. ATBD-MOD-04, 62 pp.

  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Moore, J. K., M. R. Abbott, and J. G. Richman, 1999: Location and dynamics of the Antarctic polar front from satellite sea surface temperature data. J. Geophys. Res., 104, 30593073, doi:10.1029/1998JC900032.

    • Search Google Scholar
    • Export Citation
  • Moore, R. H., V. A. Karydis, S. L. Capps, T. L. Lathem, and A. Nenes, 2013: Droplet number uncertainties associated with CCN: An assessment using observations and a global model adjoint. Atmos. Chem. Phys., 13, 42354251, doi:10.5194/acp-13-4235-2013.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. E., S. T. Siems, and M. J. Manton, 2011: A cloud-top phase climatology of Southern Ocean clouds. J. Climate, 24, 24052418, doi:10.1175/2010JCLI3842.1.

    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., I. L. McCoy, and R. Wood, 2014: Climatology of stratocumulus cloud morphologies: Microphysical properties and radiative effects. Atmos. Chem. Phys., 14, 66956716, doi:10.5194/acp-14-6695-2014.

    • Search Google Scholar
    • Export Citation
  • Mulcahy, J. P., D. N. Walters, N. Bellouin, and S. F. Milton, 2014: Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model. Atmos. Chem. Phys., 14, 47494778, doi:10.5194/acp-14-4749-2014.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., K. Suzuki, and G. Stephens, 2010a: Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet sizes. J. Atmos. Sci., 67, 18841896, doi:10.1175/2009JAS3280.1.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., K. Suzuki, and G. Stephens, 2010b: Droplet growth in warm water clouds observed by the A-Train. Part II: A multi-sensor view. J. Atmos. Sci., 67, 18971907, doi:10.1175/2010JAS3276.1.

    • Search Google Scholar
    • Export Citation
  • National Science Foundation, 2014: NSF Advisory Committee for Geosciences: Dynamic Earth: GEO Imperatives and Frontiers 2015–2020. National Science Foundation, 33 pp. [Available online at https://www.nsf.gov/geo/acgeo/geovision/start.jsp.]

  • Naud, C. M., J. F. Booth, and A. D. Del Genio, 2014: Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. J. Climate, 27, 21092124, doi:10.1175/JCLI-D-13-00432.1.

    • Search Google Scholar
    • Export Citation
  • Park, K.-A., P. C. Cornillon, and D. L. Codiga, 2006: Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J. Geophys. Res., 111, C03021, doi:10.1029/2005JC003016.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2014: MODIS Cloud Optical Properties: User Guide for the Collection 6 Level-2 MOD06/MYD06 product and associated level-3 datasets. NASA Goddard Space Flight Center, 140 pp. [Available online at http://modis-atmos.gsfc.nasa.gov/_docs/C6MOD06OPUserGuide.pdf.]

  • Powell, K., and Coauthors, 2010: The CALIOP 532-nm channel daytime calibration: Version 3 algorithm. Proc. 25th Int. Laser Radar Conf., St. Petersburg, Russia, Intl. Radiation Commission, 1367–1370.

  • Protat, A., S. A. Young, L. Rikus, and M. Whimpey, 2014: Evaluation of hydrometeor frequency of occurrence in a limited-area numerical weather prediction system using near real-time CloudSat-CALIPSO observations. Quart. J. Roy. Meteor. Soc., 140, 24302443, doi:10.1002/qj.2308.

    • Search Google Scholar
    • Export Citation
  • Quinn, P. K., and T. S. Bates, 2011: The case against climate regulation via oceanic phytoplankton sulfur emissions. Nature, 480, 5156, doi:10.1038/nature10580.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Y. J. Kaufman, and I. Koren, 2006: Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols. Atmos. Chem. Phys., 6, 25032511, doi:10.5194/acp-6-2503-2006.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., H. Wang, and P. J. Rasch, 2012: The roles of cloud drop effective radius and LWP in determining rain properties in marine stratocumulus. Geophys. Res. Lett., 39, L13801, doi:10.1029/2012GL052028.

    • Search Google Scholar
    • Export Citation
  • Russell, L., D. H. Lenschow, K. K. Laursen, P. B. Krummel, S. T. Siems, A. R. Bandy, D. C. Thornton, and T. S. Bates, 1998: Bidirectional mixing in an ACE-1 marine boundary layer overlain by a second turbulent layer. J. Geophys. Res., 103, 16 41116 432, doi:10.1029/97JD03437.

    • Search Google Scholar
    • Export Citation
  • Small, J. R., R. A. Tomas, and F. O. Bryan, 2014: Storm track response to ocean fronts in a global high-resolution climate model. Climate Dyn., 43, 805828, doi:10.1007/s00382-013-1980-9.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the Southern Oceans. J. Climate, 23, 440454, doi:10.1175/2009JCLI3152.1.

    • Search Google Scholar
    • Export Citation
  • Vallina, S. M., R. Simo, and S. Gasso, 2006: What controls CCN seasonality in the Southern Ocean? A statistical analysis based on satellite-derived chlorophyll and CCN and model-estimated OH radical and rainfall. Global Biogeochem. Cycles, 20, GB1014, doi:10.1029/2005GB002597.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M., and B. Stevens, 2005: Observations of the structure of heavily precipitating marine stratocumulus. J. Atmos. Sci., 62, 43274342, doi:10.1175/JAS3611.1.

    • Search Google Scholar
    • Export Citation
  • Villas Bôas, A. B., O. T. Sato, A. Chaigneau, and G. P. Castelão, 2015: The signature of mesoscale eddies on the air–sea turbulent heat fluxes in the South Atlantic Ocean. Geophys. Res. Lett., 42, 18561862, doi:10.1002/2015GL063105.

    • Search Google Scholar
    • Export Citation
  • Walters, D. N., K. D. Williams, I. A. Boutle, and Coauthors, 2014: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configuration. Geosci. Model Dev., 7, 361386, doi:10.5194/gmd-7-361-2014.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and G. Feingold, 2009: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 32373256, doi:10.1175/2009JAS3022.1.

    • Search Google Scholar
    • Export Citation
  • Wang, L., J. Qu, X. Xiong, X. Hao, Y. Xie, and N. Che, 2006: A new method for retrieving band 6 of Aqua MODIS. IEEE Geosci. Remote Sens. Lett., 3, 267270, doi:10.1109/LGRS.2006.869966.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., S. T. Siems, D. Belušić, M. J. Manton, and Y. Huang, 2015: A climatology of the precipitation over the Southern Ocean as observed at Macquarie Island. J. Appl. Meteor. Climatol., 54, 23212337, doi:10.1175/JAMC-D-14-0211.1.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., C. Gentemann, and P. Ashcroft, 2003: On-orbit calibration of AMSR-E and the retrieval of ocean products. 12th Conf. on Satellite Meteorology and Oceanography, Amer. Meteor. Soc., Long Beach, CA, P5.9. [Available online at https://ams.confex.com/ams/annual2003/techprogram/paper_56760.htm.]

  • White, W. B., and J. L. Annis, 2003: Coupling of extratropical mesoscale eddies in the ocean to westerly winds in the atmospheric boundary layer. J. Phys. Oceanogr., 33, 10951107, doi:10.1175/1520-0485(2003)033<1095:COEMEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2013: The Transpose-AMIP II Experiment and its application to the understanding of Southern Ocean cloud biases in climate models. J. Climate, 26, 32583274, doi:10.1175/JCLI-D-12-00429.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, T. W., and Coauthors, 2015: A marine biogenic source of atmospheric ice-nucleating particles. Nature, 525, 234238, doi:10.1038/nature14986.

    • Search Google Scholar
    • Export Citation
  • Wind, G., S. Platnick, M. D. King, P. A. Hubanks, M. J. Pavolonis, A. K. Heidinger, P. Yang, and B. A. Baum, 2010: Multilayer cloud detection with the MODIS near-infrared water vapor absorption band. J. Appl. Meteor. Climatol., 49, 23152333, doi:10.1175/2010JAMC2364.1.

    • Search Google Scholar
    • Export Citation
  • Wofsy, S. C., 2011: HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Proc. Roy. Soc. London, 369A, 20732086, doi:10.1098/rsta.2010.0313.

    • Search Google Scholar
    • Export Citation
  • Wolters, E. L. A., H. M. Deneke, B. J. J. M. van den Hurk, J. F. Meirink, and R. A. Roebeling, 2010: Broken and inhomogeneous cloud impact on satellite cloud particle effective radius and cloud-phase retrievals. J. Geophys. Res., 115, D10214, doi:10.1029/2009JD012205.

    • Search Google Scholar
    • Export Citation
  • Wood, R., D. Leon, M. Lebsock, J. Snider, and A. D. Clarke, 2012: Precipitation driving of droplet concentration variability in marine low clouds. J. Geophys. Res., 117, D19210, doi:10.1029/2012JD018305.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, doi:10.1175/BAMS-85-2-195.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and A. Cheng, 2013: Evaluating low-cloud simulation from an upgraded multiscale modeling framework model. Part I: Sensitivity to spatial resolution and climatology. J. Climate, 26, 57175740, doi:10.1175/JCLI-D-12-00200.1.

    • Search Google Scholar
    • Export Citation
  • Zábori, J., R. Krejci, A. M. L. Ekman, E. M. Mårtensson, J. Ström, G. de Leeuw, and E. D. Nilsson, 2012: Wintertime Arctic Ocean sea water properties and primary marine aerosol concentrations. Atmos. Chem. Phys., 12, 10 40510 421, doi:10.5194/acp-12-10405-2012.

    • Search Google Scholar
    • Export Citation
  • Zábori, J., R. Krejci, J. Ström, P. Vaattovaara, A. M. L. Ekman, M. E. Salter, E. M. Mårtensson, and E. D. Nilsson, 2013: Comparison between summertime and wintertime Arctic Ocean primary marine aerosol properties. Atmos. Chem. Phys., 13, 47834799, doi:10.5194/acp-13-4783-2013.

    • Search Google Scholar
    • Export Citation
  • Zeng, S., C. Cornet, F. Parol, J. Riedi, and F. Thieuleux, 2012: A better understanding of cloud optical thickness derived from the passive sensors MODIS/AQUA and POLDER/PARASOL in the A-Train constellation. Atmos. Chem. Phys., 12, 11 24511 259, doi:10.5194/acp-12-11245-2012.

    • Search Google Scholar
    • Export Citation
  • Zeng, S., J. Riedi, C. R. Trepte, D. M. Winker, and Y.-X. Hu, 2014: Study of global cloud droplet number concentration with A-Train satellites. Atmos. Chem. Phys., 14, 71257134, doi:10.5194/acp-14-7125-2014.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., 2013: On the sensitivity of cloud effective radius retrieval based on spectral method to bi-modal droplet size distribution: A semi-analytical model. J. Quant. Spectrosc. Radiat. Transfer, 129, 7988, doi:10.1016/j.jqsrt.2013.05.033.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and S. Platnick, 2011: An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands. J. Geophys. Res., 116, D20215, doi:10.1029/2011JD016216.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., A. S. Ackerman, G. Feingold, S. Platnick, R. Pincus, and H. Xue, 2012: Effects of cloud horizontal inhomogeneity and drizzle on remote sensing of cloud droplet effective radius: Case studies based on large-eddy simulations. J. Geophys. Res., 117, D19208, doi:10.1029/2012JD017655.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2049 875 74
PDF Downloads 612 123 13