Investigation of the Residual in Column-Integrated Atmospheric Energy Balance Using Cloud Objects

Seiji Kato NASA Langley Research Center, Hampton, Virginia

Search for other papers by Seiji Kato in
Current site
Google Scholar
PubMed
Close
,
Kuan-Man Xu NASA Langley Research Center, Hampton, Virginia

Search for other papers by Kuan-Man Xu in
Current site
Google Scholar
PubMed
Close
,
Takmeng Wong NASA Langley Research Center, Hampton, Virginia

Search for other papers by Takmeng Wong in
Current site
Google Scholar
PubMed
Close
,
Norman G. Loeb NASA Langley Research Center, Hampton, Virginia

Search for other papers by Norman G. Loeb in
Current site
Google Scholar
PubMed
Close
,
Fred G. Rose Science Systems and Applications Inc., Hampton, Virginia

Search for other papers by Fred G. Rose in
Current site
Google Scholar
PubMed
Close
,
Kevin E. Trenberth National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Kevin E. Trenberth in
Current site
Google Scholar
PubMed
Close
, and
Tyler J. Thorsen NASA Langley Research Center, and NASA Postdoctoral Program, Hampton, Virginia

Search for other papers by Tyler J. Thorsen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observationally based atmospheric energy balance is analyzed using Clouds and the Earth’s Radiant Energy System (CERES)-derived TOA and surface irradiance, Global Precipitation Climatology Project (GPCP)-derived precipitation, dry static and kinetic energy tendency and divergence estimated from ERA-Interim, and surface sensible heat flux from SeaFlux. The residual tends to be negative over the tropics and positive over midlatitudes. A negative residual implies that the precipitation rate is too small, divergence is too large, or radiative cooling is too large. The residual of atmospheric energy is spatially and temporally correlated with cloud objects to identify cloud types associated with the residual. Spatially, shallow cumulus, cirrostratus, and deep convective cloud-object occurrence are positively correlated with the absolute value of the residual. The temporal correlation coefficient between the number of deep convective cloud objects and individual energy components, net atmospheric irradiance, precipitation rate, and the sum of dry static and kinetic energy divergence and their tendency over the western Pacific are 0.84, 0.95, and 0.93, respectively. However, when all energy components are added, the atmospheric energy residual over the tropical Pacific is temporally correlated well with the number of shallow cumulus cloud objects over tropical Pacific. Because shallow cumulus alters not enough atmospheric energy compared to the residual, this suggests the following: 1) if retrieval errors associated with deep convective clouds are causing the column-integrated atmospheric energy residual, the errors vary among individual deep convective clouds, and 2) it is possible that the residual is associated with processes in which shallow cumulus clouds affect deep convective clouds and hence atmospheric energy budget over the tropical western Pacific.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0782.s1.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Seiji Kato, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681-2199. E-mail: seiji.kato@nasa.gov

Abstract

Observationally based atmospheric energy balance is analyzed using Clouds and the Earth’s Radiant Energy System (CERES)-derived TOA and surface irradiance, Global Precipitation Climatology Project (GPCP)-derived precipitation, dry static and kinetic energy tendency and divergence estimated from ERA-Interim, and surface sensible heat flux from SeaFlux. The residual tends to be negative over the tropics and positive over midlatitudes. A negative residual implies that the precipitation rate is too small, divergence is too large, or radiative cooling is too large. The residual of atmospheric energy is spatially and temporally correlated with cloud objects to identify cloud types associated with the residual. Spatially, shallow cumulus, cirrostratus, and deep convective cloud-object occurrence are positively correlated with the absolute value of the residual. The temporal correlation coefficient between the number of deep convective cloud objects and individual energy components, net atmospheric irradiance, precipitation rate, and the sum of dry static and kinetic energy divergence and their tendency over the western Pacific are 0.84, 0.95, and 0.93, respectively. However, when all energy components are added, the atmospheric energy residual over the tropical Pacific is temporally correlated well with the number of shallow cumulus cloud objects over tropical Pacific. Because shallow cumulus alters not enough atmospheric energy compared to the residual, this suggests the following: 1) if retrieval errors associated with deep convective clouds are causing the column-integrated atmospheric energy residual, the errors vary among individual deep convective clouds, and 2) it is possible that the residual is associated with processes in which shallow cumulus clouds affect deep convective clouds and hence atmospheric energy budget over the tropical western Pacific.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0782.s1.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Seiji Kato, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681-2199. E-mail: seiji.kato@nasa.gov

Supplementary Materials

    • Supplemental Materials (DOCX 762.03 KB)
Save
  • Adler, R. F., G. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP). J. Appl. Meteor. Climatol., 51, 8499, doi:10.1175/JAMC-D-11-052.1.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., G. Stephens, R. F. Adler, G. J. Huffman, B. Lambrigsten, and M. Lebsock, 2014: An update on the oceanic precipitation rate and its zonal distribution in light of advanced observations from space. J. Climate, 27, 39573965, doi:10.1175/JCLI-D-13-00679.1.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and J. M. Haynes, 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543, doi:10.1175/2009JAMC2330.1.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 1982: Diagnostic equations in isobaric coordinates. Mon. Wea. Rev., 110, 18011820, doi:10.1175/1520-0493(1982)110<1801:DEIIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, P. J., and C. D. Kummerow, 2014: An assessment of atmospheric water budget components over tropical oceans. J. Climate, 27, 20542071, doi:10.1175/JCLI-D-13-00385.1.

    • Search Google Scholar
    • Export Citation
  • Chen, B., and C. Liu, 2016: Warm organized rain system over the tropical Pacific. J. Climate, 29, 34033422, doi:10.1175/JCLI-D-15-0177.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008: The annual cycle of the energy budget. Part I: Global mean and land–ocean exchanges. J. Climate, 21, 22972312, doi:10.1175/2007JCLI1935.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, doi:10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kato, S., 2009: Interannual variability of the global radiation budget. J. Climate, 22, 48934907, doi:10.1175/2009JCLI2795.1.

  • Kato, S., and Coauthors, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, D. A. Rutan, F. G. Rose, S. Sun-Mack, W. F. Miller, and Y. Chen, 2012: Uncertainty estimate of surface irradiances computed with MODIS-, CALIPSO-, and CloudSat-derived cloud and aerosol properties. Surv. Geophys., 33, 395412, doi:10.1007/s10712-012-9179-x.

    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, doi:10.1175/JCLI-D-12-00436.1.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., and M. J. Webb, 2008: Dependency of global mean precipitation on surface temperature. Geophys. Res. Lett., 35, L16706, doi:10.1029/2008GL034838.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T., and Coauthors, 2015: The observed state of the energy budget in the early twenty-first century. J. Climate, 28, 83198346, doi:10.1175/JCLI-D-14-00556.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., J. M. Lyman, G. C. Johnson, R. P. Allan, D. R. Doelling, T. Wong, B. J. Soden, and G. L. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110113, doi:10.1038/ngeo1375.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., D. A. Rutan, S. Kato, and W. Wang, 2014: Observing interannual variations in Hadley circulation atmospheric diabatic heating and circulation strength. J. Climate, 27, 41394158, doi:10.1175/JCLI-D-13-00656.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., H. Wang, A. Cheng, S. Kato, J. T. Fasullo, K.-M. Xu, and R. P. Allan, 2016: Observational constraints on atmospheric and oceanic cross-equatorial hear transports: Revising the precipitation asymmetry problem in climate models. Climate Dyn., 46, 32393257, doi:10.1007/s00382-015-2766-z.

    • Search Google Scholar
    • Export Citation
  • Mayer, M., and L. Haimberger, 2012: Poleward atmospheric energy transport and their variability as evaluated from ECMWF reanalysis data. J. Climate, 25, 734752, doi:10.1175/JCLI-D-11-00202.1.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A., J. D. Neelin, and B. Stevens, 2007: Impact mechanism of shallow cumulus convection on tropical climate dynamics. J. Climate, 20, 26232642, doi:10.1175/JCLI4079.1.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., B. Stevens, and A. P. Siebesma, 2009: The environment of precipitating shallow cumulus convection. J. Atmos. Sci., 66, 19621979, doi:10.1175/2008JAS2841.1.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, D. Lee, S. Kato, and G. J. Huffman, 2014: An examination of the nature of global MODIS cloud regimes. J. Geophys. Res. Atmos., 119, 83628383, doi:10.1002/2013JD021409.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Riehl, H., and J. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503538.

  • Sassen, K., and Z. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1‐year of results. Geophys. Res. Lett., 35, L04805, doi:10.1029/2007GL032591.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and C. D. Kummerow, 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765, doi:10.1175/2006JAS2375.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155, doi:10.1175/2008JCLI2144.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, doi:10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: Using atmospheric budgets as constraint on surface fluxes. J. Climate, 10, 27962809, doi:10.1175/1520-0442(1997)010<2796:UABAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Solomon, 1993: Implications of global atmospheric spatial spectra for processing and displaying data. J. Climate, 6, 531545, doi:10.1175/1520-0442(1993)006<0531:IOGASS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003a: Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate, 16, 36913705, doi:10.1175/1520-0442(2003)016<3691:COCOPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003b: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Climate, 16, 37063722, doi:10.1175/1520-0442(2003)016<3706:SPAETA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2004: The flow of energy through the earth’s climate system. Quart. J. Roy. Meteor. Soc., 130, 26772701, doi:10.1256/qj.04.83.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and L. Smith, 2009: The three dimensional structure of the atmospheric energy budget: Methodology and evaluation. Climate Dyn., 32, 10651079, doi:10.1007/s00382-008-0389-3.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2013: Regional energy and water cycles: Transport from ocean to land. J. Climate, 26, 78377851, doi:10.1175/JCLI-D-13-00008.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, doi:10.1175/JHM600.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323, doi:10.1175/2008BAMS2634.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Vinukollu, R. K., E. F. Wood, C. R. Ferguson, and J. B. Fisher, 2011: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ., 115, 801823, doi:10.1016/j.rse.2010.11.006.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and R. M. Welch, 1986: Cumulus cloud properties derived using Landsat satellite data. J. Climate Appl. Meteor., 25, 261276, doi:10.1175/1520-0450(1986)025<0261:CCPDUL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and Coauthors, 2015: The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Climate Dyn., 44, 33933429, doi:10.1007/s00382-014-2430-z.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Wolff, D. B., and B. L. Fisher, 2008: Comparisons of instantaneous TRMM ground validation and satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 22152237, doi:10.1175/2008JAMC1875.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., T. Wong, B. A. Wielicki, L. Parker, and Z. A. Eitzen, 2005: Statistical analyses of satellite cloud object data from CERES. Part I: Methodology and preliminary results of 1998 El Niño/2000 La Niña. J. Climate, 18, 24972514, doi:10.1175/JCLI3418.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., T. Wong, S. Dong, F. Chen, S. Kato, and P. C. Taylor, 2016a: Cloud object analysis of CERES Aqua observations of tropical and subtropical cloud regimes, Part I: Four-year climatology. J. Climate, 29, 16171638, doi:10.1175/JCLI-D-14-00836.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, and P. W. Stackhouse Jr., 2006: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the surface. J. Geophys. Res., 112, D01102, doi:10.1029/2005JD007008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1987 1464 115
PDF Downloads 407 84 6