February Drying in Southeastern Brazil and the Australian Monsoon: Global Mechanism for a Regional Rainfall Feature

Patrick Kelly Department of Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Patrick Kelly in
Current site
Google Scholar
PubMed
Close
and
Brian Mapes Department of Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Brian Mapes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A dry February rainfall signal in southeastern Brazil is shown to be a robust, repeatable feature of climatology. This February depression or minimum in climatological rain curves has an amplitude of about 30% of the seasonal mean and coincides with a poleward excursion of tropical barotropic easterlies to about 25°S in austral midsummer. Momentum budget decomposition indicates that stationary eddy momentum flux [u*υ*] near 150 hPa in Australian longitudes is a main sink in that latitude belt’s zonal momentum budget. A physical linkage among these phenomena is suggested by statistically significant interannual correlations among February anomalies of southeastern Brazil rainfall, zonal-mean zonal wind, and indices of the Australian monsoon. To test a causality hypothesis that the sharply peaked Australian region monsoon drives the sharp climatological dry signal over Brazil, an observation-inspired tropospheric heating signal near Australia is added to the temperature equation of the full-physics Community Atmosphere Model. Results indicate the near linearity of the global subtropical responses for the modest (roughly 1 and 2 K day−1) magnitudes and scales of imposed heating. Consistent with the hypothesis, this imposed heating robustly causes easterly changes to subtropical, barotropic, zonal-mean momentum, a westward displacement of the mean synoptic-scale pattern in the western Atlantic (the western edge of the subtropical high), and reduced rainfall in southeastern Brazil. These results are closely analogous to the previous findings on a related boreal summer subtropical signal.

Current affiliation: Pacific Northwest National Laboratory, Richland, Washington.

Corresponding author address: Patrick Kelly, Dept. of Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: pkelly@rsmas.miami.edu

Abstract

A dry February rainfall signal in southeastern Brazil is shown to be a robust, repeatable feature of climatology. This February depression or minimum in climatological rain curves has an amplitude of about 30% of the seasonal mean and coincides with a poleward excursion of tropical barotropic easterlies to about 25°S in austral midsummer. Momentum budget decomposition indicates that stationary eddy momentum flux [u*υ*] near 150 hPa in Australian longitudes is a main sink in that latitude belt’s zonal momentum budget. A physical linkage among these phenomena is suggested by statistically significant interannual correlations among February anomalies of southeastern Brazil rainfall, zonal-mean zonal wind, and indices of the Australian monsoon. To test a causality hypothesis that the sharply peaked Australian region monsoon drives the sharp climatological dry signal over Brazil, an observation-inspired tropospheric heating signal near Australia is added to the temperature equation of the full-physics Community Atmosphere Model. Results indicate the near linearity of the global subtropical responses for the modest (roughly 1 and 2 K day−1) magnitudes and scales of imposed heating. Consistent with the hypothesis, this imposed heating robustly causes easterly changes to subtropical, barotropic, zonal-mean momentum, a westward displacement of the mean synoptic-scale pattern in the western Atlantic (the western edge of the subtropical high), and reduced rainfall in southeastern Brazil. These results are closely analogous to the previous findings on a related boreal summer subtropical signal.

Current affiliation: Pacific Northwest National Laboratory, Richland, Washington.

Corresponding author address: Patrick Kelly, Dept. of Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: pkelly@rsmas.miami.edu
Save
  • Ait-Chaalal, F., and T. Schneider, 2015: Why eddy momentum fluxes are concentrated in the upper troposphere. J. Atmos. Sci., 72, 15851604, doi:10.1175/JAS-D-14-0243.1.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., 1983: Monsoon and teleconnection variability over Australasia during the Southern Hemisphere summers of 1973–77. Mon. Wea. Rev., 111, 113142, doi:10.1175/1520-0493(1983)111<0113:MATVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bamston, A. G., M. Chelliah, and S. B. Goldenberg, 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific: Research note. Atmos.–Ocean, 35, 367383, doi:10.1080/07055900.1997.9649597.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and T. A. Shaw, 2013: The effect of moist convection on the tropospheric response to tropical and subtropical zonally asymmetric torques. J. Atmos. Sci., 70, 40894111, doi:10.1175/JAS-D-13-041.1.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108, doi:10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, P., M. P. Hoerling, and R. M. Dole, 2001: The origin of the subtropical anticyclones. J. Atmos. Sci., 58, 18271835, doi:10.1175/1520-0469(2001)058<1827:TOOTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coelho, C. A. S., and Coauthors, 2015: The 2014 southeast Brazil austral summer drought: Regional scale mechanisms and teleconnections. Climate Dyn., 46, 37373752, doi:10.1007/s00382-015-2800-1.

    • Search Google Scholar
    • Export Citation
  • Conley, A. J., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 289 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., J. M. Wallace, and I. Kraucunas, 2005: Tropical zonal momentum balance in the NCEP reanalyses. J. Atmos. Sci., 62, 24992513, doi:10.1175/JAS3486.1.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Figueroa, S. N., P. Satyamurty, and P. L. Da Silva Dias, 1995: Simulations of the summer circulation over the South American region with an eta coordinate model. J. Atmos. Sci., 52, 15731584, doi:10.1175/1520-0469(1995)052<1573:SOTSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gamble, D. W., and S. Curtis, 2008: Caribbean precipitation: Review, model, and prospect. Prog. Phys. Geogr., 32, 265276, doi:10.1177/0309133308096027.

    • Search Google Scholar
    • Export Citation
  • Hill, K. J., A. S. Taschetto, and M. H. England, 2011: Sensitivity of South American summer rainfall to tropical Pacific Ocean SST anomalies. Geophys. Res. Lett., 38, L01701, doi:10.1029/2010GL045571.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 532 pp.

  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and M. J. Rodwell, 1995: A model of the Asian summer monsoon. Part I: The global scale. J. Atmos. Sci., 52, 13291340, doi:10.1175/1520-0469(1995)052<1329:AMOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparison. J. Climate, 28, 911930, doi:10.1175/JCLI-D-14-00006.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary data set for the Community Atmosphere Model. J. Climate, 21, 51455153, doi:10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and L. M. V. Carvalho, 2002: Active and break phases in the South American monsoon system. J. Climate, 15, 905914, doi:10.1175/1520-0442(2002)015<0905:AABPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, Y., B. Wang, and J. Yang, 2010: A multi-time scale Australian monsoon index. Int. J. Climatol., 30, 11141120, doi:10.1002/joc.1955.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1983: Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111125, doi:10.1016/0377-0265(83)90013-1.

    • Search Google Scholar
    • Export Citation
  • Kelly, P., 2012: Planetary dynamics of the western Atlantic mid-summer drought and its relationship to the Asian monsoon. Ph.D. dissertation, University of Miami, 143 pp.

  • Kelly, P., and B. Mapes, 2011: Zonal mean wind, the Indian monsoon, and July drying in the western Atlantic subtropics. J. Geophys. Res., 116, D00Q07, doi:10.1029/2010JD015405.

    • Search Google Scholar
    • Export Citation
  • Kelly, P., and B. Mapes, 2013: Asian monsoon forcing of subtropical easterlies in the Community Atmosphere Model: Summer climate implications for the western Atlantic. J. Climate, 26, 27412755, doi:10.1175/JCLI-D-12-00339.1.

    • Search Google Scholar
    • Export Citation
  • Kraucunas, I., and D. L. Hartmann, 2005: Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropical upper troposphere. J. Atmos. Sci., 62, 371389, doi:10.1175/JAS-3365.1.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, doi:10.1175/JCLI3617.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, J. A. Marengo, T. Ambrizzi, and J. D. Glick, 1999: Submonthly convective variability over South America and the South Atlantic convergence zone. J. Climate, 12, 18771891, doi:10.1175/1520-0442(1999)012<1877:SCVOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. D. Neelin, 2007: A prototype for convective margin shifts. Geophys. Res. Lett., 34, L05812, doi:10.1029/2006GL027305.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. D. Neelin, 2008: Eastern margin variability of the South Pacific convergence zone. Geophys. Res. Lett., 35, L16701, doi:10.1029/2008GL034298.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., W. Tang, and F. J. Wentz, 1992: Precipitable water and surface humidity over global oceans from special sensor microwave imager and European Centre for Medium-Range Weather Forecasts. J. Geophys. Res., 97, 22512264, doi:10.1029/91JC02615.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., 2014a: Understanding midlatitude jet variability and change using Rossby wave chromatography: Poleward-shifted jets in response to external forcing. J. Atmos. Sci., 71, 23702389, doi:10.1175/JAS-D-13-0200.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., 2014b: Understanding midlatitude jet variability and change using Rossby wave chromatography: Wave–mean flow interaction. J. Atmos. Sci., 71, 36843705, doi:10.1175/JAS-D-13-0201.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, doi:10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magaña, V., J. A. Amador, and S. Medina, 1999: The midsummer drought over Mexico and Central America. J. Climate, 12, 15771588, doi:10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., P. Liu, and N. Buenning, 2005: Indian monsoon onset and America’s midsummer drought: Out-of-equilibrium responses to smooth seasonal forcing. J. Climate, 18, 11091115, doi:10.1175/JCLI-3310.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • McBride, J. L., 1987: The Australian monsoon. Monsoon Meteorology, C. P. Change and T. N. Krishnamurti, Eds., Oxford University Press, 203–213.

  • Menne, M. J., I. Durre, B. G. Gleason, T. G. Houston, and R. S. Vose, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Miyasaka, T., and H. Nakamura, 2005: Structure and formation mechanisms of the Northern Hemisphere summertime subtropical highs. J. Climate, 18, 50465065, doi:10.1175/JCLI3599.1.

    • Search Google Scholar
    • Export Citation
  • Miyasaka, T., and H. Nakamura, 2010: Structure and mechanisms of the Southern Hemisphere summertime subtropical anticyclones. J. Climate, 23, 21152130, doi:10.1175/2009JCLI3008.1.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. Paegle, 2001: The Pacific–South American modes and their downstream impact. Int. J. Climatol., 21, 12111229, doi:10.1002/joc.685.

    • Search Google Scholar
    • Export Citation
  • Nogués-Paegle, J., and K. C. Mo, 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125, 279291, doi:10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part II: Model results. J. Atmos. Sci., 63, 14201431, doi:10.1175/JAS3698.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and C. R. Mechoso, 2000: Interannual and interdecadal variability of the South Atlantic convergence zone. Mon. Wea. Rev., 128, 29472957, doi:10.1175/1520-0493(2000)128<2947:IAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, doi:10.1002/qj.49712253408.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, doi:10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1975: The upper tropospheric circulation over the global tropics. Department of Meteorology, University of Hawaii, UHMET-75-05, 35 pp. [Available from Department of Meteorology, University of Hawaii, 2525 Correa Rd., Honolulu, HI 96822.]

  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., M. H. Zhang, and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64, 25932610, doi:10.1175/JAS3938.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and W. R. Boos, 2012: The tropospheric response to tropical and subtropical zonally asymmetric torques: Analytical and idealized numerical model results. J. Atmos. Sci., 69, 214235, doi:10.1175/JAS-D-11-0139.1.

    • Search Google Scholar
    • Export Citation
  • Showman, A. P., and L. M. Polvani, 2010: The Matsuno–Gill model and equatorial superrotation. Geophys. Res. Lett., 37, L18811, doi:10.1029/2010GL044343.

    • Search Google Scholar
    • Export Citation
  • Tanaka, M., 1981: Interannual fluctuations of the tropical monsoon circulation over the greater WMONEX area. J. Meteor. Soc. Japan, 59, 825831.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8, 22552272, doi:10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • van der Wiel, K., A. J. Matthews, D. P. Stevens, and M. M. Joshi, 2015: A dynamical framework for the origin of the diagonal South Pacific and South Atlantic convergence zones. Quart. J. Roy. Meteor. Soc., 141, 19972010, doi:10.1002/qj.2508.

    • Search Google Scholar
    • Export Citation
  • Wang, B., I. S. Kang, and J. Y. Lee, 2004: Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J. Climate, 17, 803818, doi:10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, doi:10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17 year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and S. M. Hagos, 2009: Bi-modal structure and variability of large-scale diabatic heating in the tropics. J. Atmos. Sci., 66, 36213640, doi:10.1175/2009JAS3089.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 660 350 25
PDF Downloads 157 38 4