Investigating Possible Arctic–Midlatitude Teleconnections in a Linear Framework

Raymond Sellevold Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Raymond Sellevold in
Current site
Google Scholar
PubMed
Close
,
Stefan Sobolowski Uni Research Climate, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Stefan Sobolowski in
Current site
Google Scholar
PubMed
Close
, and
Camille Li Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Camille Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There is an ongoing debate over whether accelerated Arctic warming [Arctic amplification (AA)] is altering the large-scale circulation responsible for the anomalous weather experienced by midlatitude regions in recent years. Among the proposed mechanisms is the idea that local processes associated with sea ice loss heat the lower troposphere at high latitudes, thus weakening the equator-to-pole temperature gradient and driving changes in quasi-stationary waves, the midlatitude jets, and storm tracks. It is further hypothesized that these circulation changes are conducive to persistent weather patterns. Because of the short observational record and large atmospheric internal variability, it is difficult to identify robust relationships and infer causality. Here, a simplified, linear, steady-state model is used to investigate the direct response of the midlatitude atmospheric circulation to thermal forcing in the Arctic. The results suggest that there is a weak midlatitude circulation response to an idealized, but representative, Arctic heating perturbation. Further, the stationary wave responses are shown to be well within the bounds of internal variability. A midlatitude response is excited if the idealized heating penetrates up to the tropopause. Such deep, persistent heating is not observed on average during the AA period but does suggest a pathway for Arctic–midlatitude linkages under specific conditions. This study adds to the growing body of work suggesting that warming in the lower troposphere associated with Arctic amplification is not currently a direct driver of anomalous midlatitude circulation changes.

Corresponding author address: Stefan Sobolowski, Uni Research Climate, Damsgårdgaten 112, 5008, Bergen, Norway. E-mail: stefan.sobolowski@uni.no

Abstract

There is an ongoing debate over whether accelerated Arctic warming [Arctic amplification (AA)] is altering the large-scale circulation responsible for the anomalous weather experienced by midlatitude regions in recent years. Among the proposed mechanisms is the idea that local processes associated with sea ice loss heat the lower troposphere at high latitudes, thus weakening the equator-to-pole temperature gradient and driving changes in quasi-stationary waves, the midlatitude jets, and storm tracks. It is further hypothesized that these circulation changes are conducive to persistent weather patterns. Because of the short observational record and large atmospheric internal variability, it is difficult to identify robust relationships and infer causality. Here, a simplified, linear, steady-state model is used to investigate the direct response of the midlatitude atmospheric circulation to thermal forcing in the Arctic. The results suggest that there is a weak midlatitude circulation response to an idealized, but representative, Arctic heating perturbation. Further, the stationary wave responses are shown to be well within the bounds of internal variability. A midlatitude response is excited if the idealized heating penetrates up to the tropopause. Such deep, persistent heating is not observed on average during the AA period but does suggest a pathway for Arctic–midlatitude linkages under specific conditions. This study adds to the growing body of work suggesting that warming in the lower troposphere associated with Arctic amplification is not currently a direct driver of anomalous midlatitude circulation changes.

Corresponding author address: Stefan Sobolowski, Uni Research Climate, Damsgårdgaten 112, 5008, Bergen, Norway. E-mail: stefan.sobolowski@uni.no
Save
  • Alexander, M. A., U. S. Bhatt, J. E. Walsh, M. S. Timlin, J. S. Miller, and J. D. Scott, 2004: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Climate, 17, 890905, doi:10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 47344739, doi:10.1002/grl.50880.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. M. Polvani, 2015: CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J. Climate, 28, 52545271, doi:10.1175/JCLI-D-14-00589.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, doi:10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., E. Dunn-Sigouin, G. Masato, and T. Woollings, 2014: Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 41, 638644, doi:10.1002/2013GL058745.

    • Search Google Scholar
    • Export Citation
  • Blackport, R., and P. J. Kushner, 2016: The transient and equilibrium climate response to rapid summertime sea ice loss in CCSM4. J. Climate, 29, 401417, doi:10.1175/JCLI-D-15-0284.1.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Chan, S. C., and S. Nigam, 2009: Residual diagnosis of diabatic heating from ERA-40 and NCEP reanalyses: Intercomparisons with TRMM. J. Climate, 22, 414428, doi:10.1175/2008JCLI2417.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

    • Search Google Scholar
    • Export Citation
  • Coumou, D., V. Petoukhov, S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2014: Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl. Acad. Sci. USA, 111, 12 33112 336, doi:10.1073/pnas.1412797111.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, doi:10.1175/2009JCLI3053.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and L. Sun, 2015: The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Climate, 28, 21682186, doi:10.1175/JCLI-D-14-00325.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., L. Sun, R. A. Tomas, and J. Screen, 2016: Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophys. Res. Lett., 43, 21492157, doi:10.1002/2016GL067792.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, doi:10.1088/1748-9326/10/1/014005.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., W. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, doi:10.1029/2009GL037274.

    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., V. Guemas, and F. Doblas-Reyes, 2015: Added-value from initialization in predictions of Atlantic multi-decadal variability. Climate Dyn., 44, 25392555, doi:10.1007/s00382-014-2370-7.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, doi:10.1002/2015GL063083.

    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., Z. Kuang, and B. F. Farrell, 2014: Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM. Geophys. Res. Lett., 41, 52235232, doi:10.1002/2014GL060764.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, doi:10.1175/BAMS-86-11-1609.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • Hopsch, S., J. Cohen, and K. Dethloff, 2012: Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus, 64, 18624, doi:10.3402/tellusa.v64i0.18624.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and T. Woollings, 2015: Persistent extratropical regimes and climate extremes. Current Climate Change Rep., 1, 115124, doi:10.1007/s40641-015-0020-8.

    • Search Google Scholar
    • Export Citation
  • Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Climate, 25, 25612568, doi:10.1175/JCLI-D-11-00449.1.

    • Search Google Scholar
    • Export Citation
  • Jaiser, R., K. Dethloff, and D. Handorf, 2013: Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes. Tellus, 65A, 19375, doi:10.3402/tellusa.v65i0.19375.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi:10.1038/ncomms5646.

    • Search Google Scholar
    • Export Citation
  • King, M., M. Hell, and N. Keenlyside, 2016: Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Climate Dyn., 46, 11851195, doi:10.1007/s00382-015-2639-5.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Coauthors, 2010: Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett., 37, L21701, doi:10.1029/2010GL045022.

    • Search Google Scholar
    • Export Citation
  • Ling, J., and C. Zhang, 2013: Diabatic heating profiles in recent global reanalyses. J. Climate, 26, 33073325, doi:10.1175/JCLI-D-12-00384.1.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, doi:10.1073/pnas.1114910109.

    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, doi:10.1038/ngeo2277.

    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, Y. Tomikawa, and J. Ukita, 2016: The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys. Res. Lett., 43, 34943501, doi:10.1002/2016GL068330.

    • Search Google Scholar
    • Export Citation
  • Outten, S. D., and I. Esau, 2012: A link between Arctic sea ice and recent cooling trends over Eurasia. Climatic Change, 110, 10691075, doi:10.1007/s10584-011-0334-z.

    • Search Google Scholar
    • Export Citation
  • Overland, J., and M. Wang, 2015: Increased variability in the early winter subarctic North American atmospheric circulation. J. Climate, 28, 72977305, doi:10.1175/JCLI-D-15-0395.1.

    • Search Google Scholar
    • Export Citation
  • Overland, J., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, 28, 79177932, doi:10.1175/JCLI-D-14-00822.1.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Climate, 27, 244264, doi:10.1175/JCLI-D-13-00272.1.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., M. Hoerling, and R. Dole, 2015: Arctic tropospheric warming: Causes and linkages to lower latitudes. J. Climate, 28, 21542167, doi:10.1175/JCLI-D-14-00095.1.

    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2013: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl. Acad. Sci. USA, 110, 53365341, doi:10.1073/pnas.1222000110.

    • Search Google Scholar
    • Export Citation
  • Porter, D. F., J. J. Cassano, and M. C. Serreze, 2012: Local and large-scale atmospheric responses to reduced Arctic sea ice and ocean warming in the WRF Model. J. Geophys. Res., 117, D11115, doi:10.1029/2011JD016969.

    • Search Google Scholar
    • Export Citation
  • Sato, K., J. Inoue, and M. Watanabe, 2014: Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett., 9, 084009, doi:10.1088/1748-9326/9/8/084009.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, doi:10.1038/nclimate2268.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959964, doi:10.1002/grl.50174.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and I. Simmonds, 2012: Local and remote controls on observed Arctic warming. Geophys. Res. Lett., 39, L10709, doi:10.1029/2012GL051598.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, doi:10.1175/JCLI-D-12-00063.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014a: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, doi:10.1007/s00382-013-1830-9.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and L. Sun, 2014b: Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull. Amer. Meteor. Soc., 96, 14891503, doi:10.1175/BAMS-D-14-00185.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241264, doi:10.1007/s10584-005-9017-y.

  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. Barrett, J. Stroeve, D. Kindig, and M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, doi:10.5194/tc-3-11-2009.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., R. Seager, M. Ting, and T. A. Shaw, 2016: Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Climate Change, 6, 6570, doi:10.1038/nclimate2783.

    • Search Google Scholar
    • Export Citation
  • Sobolowski, S., G. Gong, and M. Ting, 2011: Investigating the linear and nonlinear stationary wave response to anomalous North American snow cover. J. Atmos. Sci., 68, 904917, doi:10.1175/2010JAS3581.1.

    • Search Google Scholar
    • Export Citation
  • Sorokina, S. A., C. Li, J. J. Wettstein, and N. G. Kvamstø, 2016: Observed atmospheric coupling between Barents Sea ice and the warm-Arctic cold-Siberian anomaly pattern. J. Climate, 29, 495511, doi:10.1175/JCLI-D-15-0046.1.

    • Search Google Scholar
    • Export Citation
  • Strey, S. T., W. L. Chapman, and J. E. Walsh, 2010: The 2007 sea ice minimum: Impacts on the Northern Hemisphere atmosphere in late autumn and early winter. J. Geophys. Res., 115, D23103, doi:10.1029/2009JD013294.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, doi:10.1088/1748-9326/8/1/014036.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, and J. A. Francis, 2014: Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nat. Climate Change, 4, 4550, doi:10.1038/nclimate2065.

    • Search Google Scholar
    • Export Citation
  • Ting, M., 1991: The stationary wave response to a midlatitude SST anomaly in an idealized GCM. J. Atmos. Sci., 48, 12491275, doi:10.1175/1520-0469(1991)048<1249:TSWRTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ting, M., 1994: Maintenance of northern summer stationary waves in a GCM. J. Atmos. Sci., 51, 32863308, doi:10.1175/1520-0469(1994)051<3286:MONSSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ting, M., 1996: Steady linear response to tropical heating in barotropic and baroclinic models. J. Atmos. Sci., 53, 16981709, doi:10.1175/1520-0469(1996)053<1698:SLRTTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ting, M., H. Wang, and L. Yu, 2001: Nonlinear stationary wave maintenance and seasonal cycle in the GFDL R30 GCM. J. Atmos. Sci., 58, 23312354, doi:10.1175/1520-0469(2001)058<2331:NSWMAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and T. G. Shepherd, 2015: Attribution of climate extreme events. Nat. Climate Change, 5, 725730, doi:10.1038/nclimate2657.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, doi:10.1007/s10712-014-9284-0.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., I. M. Held, D. W. Thompson, K. E. Trenberth, and J. E. Walsh, 2014: Global warming and winter weather. Science, 343, 729730, doi:10.1126/science.343.6172.729.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., 2014: Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global Planet. Change, 117, 5263, doi:10.1016/j.gloplacha.2014.03.003.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and M. Ting, 1999: Seasonal cycle of the climatological stationary waves in the NCEP–NCAR reanalysis. J. Atmos. Sci., 56, 38923919, doi:10.1175/1520-0469(1999)056<3892:SCOTCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and P. J. Kushner, 2011: Diagnosing the stratosphere–troposphere stationary wave response to climate change in a general circulation model. J. Geophys. Res., 116, D16113, doi:10.1029/2010JD015473.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1268 628 54
PDF Downloads 491 123 9