Intermodel Uncertainty in ENSO Amplitude Change Tied to Pacific Ocean Warming Pattern

Xiao-Tong Zheng Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, and Key Laboratory of Ocean–Atmosphere Interaction and Climate in Universities of Shandong, Ocean University of China, Qingdao, China

Search for other papers by Xiao-Tong Zheng in
Current site
Google Scholar
PubMed
Close
,
Shang-Ping Xie Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, and Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
,
Liang-Hong Lv Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, and Key Laboratory of Ocean–Atmosphere Interaction and Climate in Universities of Shandong, Ocean University of China, Qingdao, China

Search for other papers by Liang-Hong Lv in
Current site
Google Scholar
PubMed
Close
, and
Zhen-Qiang Zhou Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Zhen-Qiang Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

How El Niño–Southern Oscillation (ENSO) will change under global warming affects changes in extreme events around the world. The change of ENSO amplitude is investigated based on the historical simulations and representative concentration pathway (RCP) 8.5 experiments in phase 5 of the Coupled Model Intercomparison Project (CMIP5). The projected change in ENSO amplitude is highly uncertain with large intermodel uncertainty. By using the relative sea surface temperature (SST) as a measure of convective instability, this study finds that the spatial pattern of tropical Pacific surface warming is the major source of intermodel uncertainty in ENSO amplitude change. In models with an enhanced mean warming in the eastern equatorial Pacific, the barrier to deep convection is reduced, and the intensified rainfall anomalies of ENSO amplify the wind response and hence SST variability. In models with a reduced eastern Pacific warming, conversely, ENSO amplitude decreases. Corroborating the mean SST pattern effect, intermodel uncertainty in changes of ENSO-induced rainfall variability decreases substantially in atmospheric simulations forced by a common ocean warming pattern. Thus, reducing the uncertainty in the Pacific surface warming pattern helps improve the reliability of ENSO projections. To the extent that correcting model biases favors an El Niño–like mean warming pattern, this study suggests an increase in ENSO-related SST variance likely under global warming.

Corresponding author address: Xiao-Tong Zheng, College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China. E-mail: zhengxt@ouc.edu.cn

Abstract

How El Niño–Southern Oscillation (ENSO) will change under global warming affects changes in extreme events around the world. The change of ENSO amplitude is investigated based on the historical simulations and representative concentration pathway (RCP) 8.5 experiments in phase 5 of the Coupled Model Intercomparison Project (CMIP5). The projected change in ENSO amplitude is highly uncertain with large intermodel uncertainty. By using the relative sea surface temperature (SST) as a measure of convective instability, this study finds that the spatial pattern of tropical Pacific surface warming is the major source of intermodel uncertainty in ENSO amplitude change. In models with an enhanced mean warming in the eastern equatorial Pacific, the barrier to deep convection is reduced, and the intensified rainfall anomalies of ENSO amplify the wind response and hence SST variability. In models with a reduced eastern Pacific warming, conversely, ENSO amplitude decreases. Corroborating the mean SST pattern effect, intermodel uncertainty in changes of ENSO-induced rainfall variability decreases substantially in atmospheric simulations forced by a common ocean warming pattern. Thus, reducing the uncertainty in the Pacific surface warming pattern helps improve the reliability of ENSO projections. To the extent that correcting model biases favors an El Niño–like mean warming pattern, this study suggests an increase in ENSO-related SST variance likely under global warming.

Corresponding author address: Xiao-Tong Zheng, College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China. E-mail: zhengxt@ouc.edu.cn
Save
  • An, S.-I., and J. Choi, 2015: Why the twenty-first century tropical Pacific trend pattern cannot significantly influence ENSO amplitude? Climate Dyn., 44, 133146, doi:10.1007/s00382-014-2233-2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015a: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, doi:10.1038/nclimate2743.

  • Cai, W., and Coauthors, 2015b: Increased frequency of extreme La Niña events under greenhouse warming. Nat. Climate Change, 5, 132137, doi:10.1038/nclimate2492.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960, doi:10.1126/science.275.5302.957.

    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, doi:10.1175/JCLI-D-12-00543.1.

    • Search Google Scholar
    • Export Citation
  • Chung, C. T. Y., and S. B. Power, 2014: Precipitation response to La Niña and global warming in the Indo-Pacific. Climate Dyn., 43, 32933307, doi:10.1007/s00382-014-2105-9.

    • Search Google Scholar
    • Export Citation
  • Chung, C. T. Y., S. B. Power, J. M. Arblaster, H. A. Rashid, and G. L. Roff, 2014: Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Climate Dyn., 42, 18371856, doi:10.1007/s00382-013-1892-8.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and M. A. Alexander, 2010: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, doi:10.1029/2010GL043321.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955, doi:10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, P., and J. Ying, 2015: A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J. Climate, 28, 47064723, doi:10.1175/JCLI-D-14-00833.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., S.-P. Xie, K. Hu, G. Huang, and R. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, doi:10.1038/ngeo1792.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, doi:10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., W. Cai, F.-F. Jin, A. Santoso, L. Wu, E. Guilyardi, and S.-I. An, 2014: Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Climate Change, 4, 786790, doi:10.1038/nclimate2326.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571576, doi:10.1038/nclimate1840.

    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, Y. Du, and Y. Luo, 2016: Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: The warming pattern in CMIP5 multi-model ensemble. Climate Dyn., doi:10.1007/s00382-016-3043-5, in press.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., M. Zhao, and M. Zhang, 2015: Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat. Commun., 6, 6591, doi:10.1038/ncomms7591.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. Vavrus, F. He, N. Wen, and Y. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 46844700, doi:10.1175/JCLI3579.1.

    • Search Google Scholar
    • Export Citation
  • Long, S.-M., S.-P. Xie, and W. Liu, 2016: Uncertainty in tropical rainfall projections: Atmospheric circulation effect and the ocean coupling. J. Climate, 29, 26712687, doi:10.1175/JCLI-D-15-0601.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., and S.-P. Xie, 2013: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Climate, 26, 24822501, doi:10.1175/JCLI-D-12-00283.1.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, doi:10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM4). NCAR Tech. Note NCAR/TN-485+STR, 212 pp. [Available online at www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.]

  • Ogata, T., S.-P. Xie, A. Wittenberg, and D.-Z. Sun, 2013: Interdecadal amplitude modulation of El Niño–Southern Oscillation and its impacts on tropical Pacific decadal variability. J. Climate, 26, 72807297, doi:10.1175/JCLI-D-12-00415.1.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño, La Niña and the Southern Oscillation. Academic Press, 293 pp.

  • Power, S., F. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541545, doi:10.1038/nature12580.

    • Search Google Scholar
    • Export Citation
  • Rashid, H. A., A. C. Hirst, and S. J. Marsland, 2016: An atmospheric mechanism for ENSO amplitude changes under an abrupt quadrupling of CO2 concentration in CMIP5 models. Geophys. Res. Lett., 43, 16871694, doi:10.1002/2015GL066768.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S. L., 2012: Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett., 39, L17703, doi:10.1029/2012GL052759.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, A. Timmermann, S. McGregor, T. Ogata, H. Kubota, and Y. M. Okumura, 2012: Regional patterns of tropical Indo-Pacific climate change: Evidence of the Walker circulation weakening. J. Climate, 25, 16891710, doi:10.1175/JCLI-D-11-00263.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007a: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007b: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., A. Clement, and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Trans. Amer. Geophys. Union, 89, 8183, doi:10.1029/2008EO090002.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J.-S. Kug, F.-F. Jin, M. Collins, M. Ohba, and A. T. Wittenberg, 2012: Uncertainty in the ENSO amplitude change from the past to the future. Geophys. Res. Lett., 39, L20703, doi:10.1029/2012GL053305.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, T. L. Delworth, G. A. Vecchi, and F. Zeng, 2014: ENSO modulation: Is it decadally predictable? J. Climate, 27, 26672681, doi:10.1175/JCLI-D-13-00577.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, doi:10.1038/nclimate2689.

    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., S.-P. Xie, X.-T. Zheng, Q. Liu, and H. Wang, 2014: Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Climate, 27, 90509064, doi:10.1175/JCLI-D-14-00254.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3771 1609 71
PDF Downloads 979 258 29