The Superposition of Eastward and Westward Rossby Waves in Response to Localized Forcing

Jeffrey Shaman Department of Environmental Health Sciences, Columbia University, New York, New York

Search for other papers by Jeffrey Shaman in
Current site
Google Scholar
PubMed
Close
and
Eli Tziperman Department of Earth and Planetary Sciences, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Eli Tziperman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rossby waves are a principal form of atmospheric communication between disparate parts of the climate system. These planetary waves are typically excited by diabatic or orographic forcing and can be subject to considerable downstream modification. Because of differences in wave properties, including vertical structure, phase speed, and group velocity, Rossby waves exhibit a wide range of behaviors. This study demonstrates the combined effects of eastward-propagating stationary barotropic Rossby waves and westward-propagating very-low-zonal-wavenumber stationary barotropic Rossby waves on the atmospheric response to wintertime El Niño convective forcing over the tropical Pacific. Experiments are conducted using the Community Atmosphere Model, version 4.0, in which both diabatic forcing over the Pacific and localized relaxation outside the forcing region are applied. The localized relaxation is used to dampen Rossby wave propagation to either the west or east of the forcing region and isolate the alternate direction signal. The experiments reveal that El Niño forcing produces both eastward- and westward-propagating stationary waves in the upper troposphere. Over North Africa and Asia the aggregate undamped upper-tropospheric response is due to the superposition and interaction of these oppositely directed planetary waves that emanate from the forcing region and encircle the planet.

Corresponding author address: Jeffrey Shaman, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, Rosenfield Building, Room 1104C, New York, NY 10032. E-mail: jls106@columbia.edu

Abstract

Rossby waves are a principal form of atmospheric communication between disparate parts of the climate system. These planetary waves are typically excited by diabatic or orographic forcing and can be subject to considerable downstream modification. Because of differences in wave properties, including vertical structure, phase speed, and group velocity, Rossby waves exhibit a wide range of behaviors. This study demonstrates the combined effects of eastward-propagating stationary barotropic Rossby waves and westward-propagating very-low-zonal-wavenumber stationary barotropic Rossby waves on the atmospheric response to wintertime El Niño convective forcing over the tropical Pacific. Experiments are conducted using the Community Atmosphere Model, version 4.0, in which both diabatic forcing over the Pacific and localized relaxation outside the forcing region are applied. The localized relaxation is used to dampen Rossby wave propagation to either the west or east of the forcing region and isolate the alternate direction signal. The experiments reveal that El Niño forcing produces both eastward- and westward-propagating stationary waves in the upper troposphere. Over North Africa and Asia the aggregate undamped upper-tropospheric response is due to the superposition and interaction of these oppositely directed planetary waves that emanate from the forcing region and encircle the planet.

Corresponding author address: Jeffrey Shaman, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, Rosenfield Building, Room 1104C, New York, NY 10032. E-mail: jls106@columbia.edu
Save
  • Barlow, M., A. Hoell, and F. Colby, 2007: Examining the wintertime response to tropical convection over the eastern Indian Ocean by modifying atmospheric heating in a global atmospheric model. Geophys. Res. Lett., 34, L19702, doi:10.1029/2007GL030043.

    • Search Google Scholar
    • Export Citation
  • Bender, C. M., and S. A. Orszag, 1978: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, 593 pp.

  • Branstator, G., 1985: Analysis of general circulation model sea-surface temperature anomaly simulations using a linear model. Part II: Eigenanalysis. J. Atmos. Sci., 42, 22422254, doi:10.1175/1520-0469(1985)042<2242:AOGCMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and I.-S. Kang, 1987: Barotropic models of the extratropical response to El Niño. J. Atmos. Sci., 44, 35763586, doi:10.1175/1520-0469(1987)044<3576:BMOTER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46, 163174, doi:10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and M.-F. Ting, 1994: Organization of extratropical transients during El Niño. J. Climate, 7, 745766, doi:10.1175/1520-0442(1994)007<0745:OOETDE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. Karoly, 1981: The steady response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmospheric Model. J. Climate, 21, 51455153, doi:10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Karoly, D., 1983: Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111125, doi:10.1016/0377-0265(83)90013-1.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, J. Yoo, A. Tompkins, L. Feudale, P. Ruti, and A. Dell’Aquila, 2009: A Gill–Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Quart. J. Roy. Meteor. Soc., 135, 569579, doi:10.1002/qj.406.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and T. R. Nathan, 1997: Effects of low-frequency tropical forcing on intraseasonal tropical–extratropical interactions. J. Atmos. Sci., 54, 332346, doi:10.1175/1520-0469(1997)054<0332:EOLFTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Climate Model (CAM 4.0). NCAR Tech. Note TN-485+STR, 224 pp.

  • Nigam, S., and E. DeWeaver, 1998: Influence of orography on the extratropical response to El Niño event. J. Climate, 11, 716733, doi:10.1175/1520-0442(1998)011<0716:IOOOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2, 3855, doi:10.1357/002224039806649023.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., 2014: The seasonal effects of ENSO on atmospheric conditions associated with European precipitation: Model simulations of seasonal teleconnections. J. Climate, 27, 10101028, doi:10.1175/JCLI-D-12-00734.1.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., and E. Tziperman, 2005: The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the South Asian monsoons. J. Climate, 18, 20672079, doi:10.1175/JCLI3391.1.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., and E. Tziperman, 2011: An atmospheric teleconnection linking ENSO and southwestern European precipitation. J. Climate, 24, 124139, doi:10.1175/2010JCLI3590.1.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., S. K. Esbensen, and E. D. Maloney, 2009: The dynamics of the ENSO–Atlantic hurricane teleconnection: ENSO-related changes to the North African–Asian jet affect Atlantic basin tropical cyclogenesis. J. Climate, 22, 24582482, doi:10.1175/2008JCLI2360.1.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., R. Samelson, and E. Tziperman, 2012: Complex wavenumber Rossby wave ray tracing. J. Atmos. Sci., 69, 21122133, doi:10.1175/JAS-D-11-0193.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, doi:10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 1999: Development of synoptic-scale disturbance over the summertime tropical northwest Pacific. J. Atmos. Sci., 56, 31063127, doi:10.1175/1520-0469(1999)056<3106:DOSSDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ting, M.-F., and M. P. Hoerling, 1993: Dynamics of stationary wave anomalies during the 1986/87 El Niño. Climate Dyn., 9, 147164, doi:10.1007/BF00209751.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784811, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., K. Yamazaki, and Y. Fujiyoshi, 2007: The interaction between two separate propagations of Rossby waves. Mon. Wea. Rev., 135, 35213540, doi:10.1175/MWR3486.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1354 777 64
PDF Downloads 516 82 8