A New Paradigm for Continental U.S. Summer Rainfall Variability: Asia–North America Teleconnection

Zhiwei Zhu Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China, and International Pacific Research Center, and Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Zhiwei Zhu in
Current site
Google Scholar
PubMed
Close
and
Tim Li Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China, and International Pacific Research Center, and Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Tim Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study reveals a close relationship between the leading mode of continental U.S. (CONUS) summer rainfall and the East Asian subtropical monsoon rainfall (viz., mei-yu in China, baiu in Japan, and changma in the Korean peninsula). The East Asian subtropical monsoon rainfall and the CONUS dipole rainfall patterns are connected by an upper-level Asia–North America (ANA) teleconnection. The Rossby wave energy propagates along the path of the westerly jet stream (WJS) from East Asia to North America, affecting the CONUS summer rainfall. Mechanisms through which East Asian summer monsoon heating influence North American rainfall are illustrated by idealized anomaly atmospheric general circulation model experiments. In boreal winter, because of the southward shift of the WJS, the Pacific–North American (PNA) pattern can be excited by the tropical central/eastern Pacific heating associated with El Niño, affecting the rainfall over CONUS. In boreal summer, because the WJS is weaker and locates farther to the north, an equatorial heating anomaly cannot directly perturb the WJS. A perturbation heating over subtropical East Asia, however, can trigger an ANA pattern along the path of the WJS, affecting the rainfall over North America. The season-dependent teleconnection scenario illustrates that the predictability source of CONUS rainfall variability is different between winter and summer. While the PNA pattern generated by El Niño is critical for CONUS rainfall in northern winter, the CONUS dipole rainfall variation in boreal summer is mainly governed by the remote forcing over subtropical East Asia via the ANA teleconnection.

School of Ocean and Earth Science and Technology Contribution Number 9685, International Pacific Research Center Publication Number 1205, and Earth System Modeling Center Contribution Number 120.

Corresponding author address: Tim Li, IPRC, SOEST, University of Hawai‘i at Mānoa, 1680 East West Road, POST Bldg. 401, Honolulu, HI 96822. E-mail: timli@hawaii.edu

Abstract

The present study reveals a close relationship between the leading mode of continental U.S. (CONUS) summer rainfall and the East Asian subtropical monsoon rainfall (viz., mei-yu in China, baiu in Japan, and changma in the Korean peninsula). The East Asian subtropical monsoon rainfall and the CONUS dipole rainfall patterns are connected by an upper-level Asia–North America (ANA) teleconnection. The Rossby wave energy propagates along the path of the westerly jet stream (WJS) from East Asia to North America, affecting the CONUS summer rainfall. Mechanisms through which East Asian summer monsoon heating influence North American rainfall are illustrated by idealized anomaly atmospheric general circulation model experiments. In boreal winter, because of the southward shift of the WJS, the Pacific–North American (PNA) pattern can be excited by the tropical central/eastern Pacific heating associated with El Niño, affecting the rainfall over CONUS. In boreal summer, because the WJS is weaker and locates farther to the north, an equatorial heating anomaly cannot directly perturb the WJS. A perturbation heating over subtropical East Asia, however, can trigger an ANA pattern along the path of the WJS, affecting the rainfall over North America. The season-dependent teleconnection scenario illustrates that the predictability source of CONUS rainfall variability is different between winter and summer. While the PNA pattern generated by El Niño is critical for CONUS rainfall in northern winter, the CONUS dipole rainfall variation in boreal summer is mainly governed by the remote forcing over subtropical East Asia via the ANA teleconnection.

School of Ocean and Earth Science and Technology Contribution Number 9685, International Pacific Research Center Publication Number 1205, and Earth System Modeling Center Contribution Number 120.

Corresponding author address: Tim Li, IPRC, SOEST, University of Hawai‘i at Mānoa, 1680 East West Road, POST Bldg. 401, Honolulu, HI 96822. E-mail: timli@hawaii.edu
Save
  • Barnston, A., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Borsa, A. A., D. C. Agnew, and D. R. Cayan, 2014: Ongoing drought-induced uplift in the western United States. Science, 345, 15871590, doi:10.1126/science.1260279.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burgman, R. J., and Y. Jang, 2015: Simulated U.S. drought response to interannual and decadal Pacific SST variability. J. Climate, 28, 46884705, doi:10.1175/JCLI-D-14-00247.1.

    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, doi:10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cressman, J. E., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., 2008: The Atlantic multidecadal oscillation and extreme daily precipitation over the US and Mexico during the hurricane season. Climate Dyn., 30, 343351, doi:10.1007/s00382-007-0295-0.

    • Search Google Scholar
    • Export Citation
  • Dai, A. G., 2013: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633646, doi:10.1007/s00382-012-1446-5.

    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, doi:10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., 1996: Relationships of inter-American rainfall to tropical Atlantic and Pacific SST variability. Geophys. Res. Lett., 23, 33053308, doi:10.1029/96GL03231.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Griffin, D., and K. J. Anchukaitis, 2014: How unusual is the 2012–2014 California drought? Geophys. Res. Lett., 41, 90179023, doi:10.1002/2014GL062433.

    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., J.-E. Chu, J.-Y. Lee, B. Wang, S. N. Hameed, and M. Watanabe, 2012: What caused the cool summer over northern central Asia, East Asia and central North America during 2009? Environ. Res. Lett., 7, 044015, doi:10.1088/1748-9326/7/4/044015.

    • Search Google Scholar
    • Export Citation
  • He, J., and Z. Zhu, 2015: The relation of South China Sea monsoon onset with the subsequent rainfall over the subtropical East Asia. Int. J. Climatol., 35, 45474556, doi:10.1002/joc.4305.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, E. Yarosh, and R. Joyce, 2000: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center ATLAS 7. [Available online at http://www.cpc.ncep.noaa.gov/products/outreach/research_papers/ncep_cpc_atlas/7/toc.html.]

  • Hirota, N., and M. Takahashi, 2012: A tripolar pattern as an internal mode of the East Asian summer monsoon. Climate Dyn., 39, 22192238, doi:10.1007/s00382-012-1416-y.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and S. Feng, 2001: Variations of teleconnection of ENSO and interannual variation in summer rainfall in the central United States. J. Climate, 14, 24692480, doi:10.1175/1520-0442(2001)014<2469:VOTOEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and M. C. Veres, 2016: Atmospheric responses to North Atlantic SST anomalies in idealized experiments. Part II: North American precipitation. J. Climate, 29, 659671, doi:10.1175/JCLI-D-14-00751.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., S. Feng, and R. Oglesby, 2011: Variations in North American summer precipitation driven by the Atlantic multidecadal oscillation. J. Climate, 24, 55555570, doi:10.1175/2011JCLI4060.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and T. Li, 2005: Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18, 37773795, doi:10.1175/JCLI3516.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., J.-Y. Lee, K.-M. Kim, and I.-S. Kang, 2004: The North Pacific as a regulator of summertime climate over Eurasia and North America. J. Climate, 17, 819833, doi:10.1175/1520-0442(2004)017<0819:TNPAAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517528, doi:10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, C.-Y., W. Zhou, and T. Li, 2014: Influences of the Pacific–Japan teleconnection pattern on synoptic-scale variability in the western North Pacific. J. Climate, 27, 140154, doi:10.1175/JCLI-D-13-00183.1.

    • Search Google Scholar
    • Export Citation
  • Li, L., W. Li, and Y. Kushnir, 2012: Variation of the North Atlantic subtropical high western ridge and its implication to southeastern US summer precipitation. Climate Dyn., 39, 14011412, doi:10.1007/s00382-011-1214-y.

    • Search Google Scholar
    • Export Citation
  • Li, Q., S. Yang, V. Kousky, W. Higgins, K.-M. Lau, and P. Xie, 2005: Features of cross-Pacific climate shown in the variability of China and United States precipitation. Int. J. Climatol., 25, 16751696, doi:10.1002/joc.1271.

    • Search Google Scholar
    • Export Citation
  • Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 10931102, doi:10.1175/JAS3676.1.

    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, R. Fu, Y. Deng, and H. Wang, 2011: Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24, 14991506, doi:10.1175/2010JCLI3829.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Massachusetts Institute of Technology Dept. of Meteorology Statistical Forecast Project Rep. 1, 49 pp.

  • Lu, R., and Z. Lin, 2009: Role of subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the western North Pacific and East Asia. J. Climate, 22, 20582072, doi:10.1175/2008JCLI2444.1.

    • Search Google Scholar
    • Export Citation
  • Manuel, J., 2008: Drought in the Southeast: Lessons for water management. Environ. Health Perspect., 116, A168A171, doi:10.1289/ehp.116-a168.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, doi:10.1073/pnas.0306738101.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. E. Schemm, 2008: Relationships between ENSO and drought over the southeastern United States. Geophys. Res. Lett., 35, L15701, doi:10.1029/2008GL034656.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and C. Brankovic, 1989: The 1988 U.S. drought linked to anomalous sea surface temperature. Nature, 338, 5457, doi:10.1038/338054a0.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño–Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seager, R., T. Alexandrina, and N. Jennifer, 2009: Drought in the southeastern United States: Causes, variability over the last millennium, and the potential for future hydroclimate change. J. Climate, 22, 50215045, doi:10.1175/2009JCLI2683.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T., R. Reynolds, T. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, doi:10.1126/science.1109496.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and H. Wang, 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10, 18531873, doi:10.1175/1520-0442(1997)010<1853:SUSPVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 12881298, doi:10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Veres, M., and Q. Hu, 2015: Atmospheric responses to North Atlantic SST anomalies in idealized experiments. Part I: Northern Hemispheric circulation. J. Climate, 28, 62046220, doi:10.1175/JCLI-D-14-00413.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans, 44, 165183, doi:10.1016/j.dynatmoce.2007.05.002.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impact on Asian–Australian monsoon variability. J. Climate, 16, 11951211, doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, H., R. Fu, A. Kumar, and W. Li, 2010: Intensification of summer rainfall variability in the southeastern United States during recent decades. J. Hydrometeor., 11, 10071018, doi:10.1175/2010JHM1229.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, doi:10.1175/2010JCLI3300.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., R. J. Park, M. J. Kim, J. I. Jeong, and C. K. Song, 2015: Effect of anthropogenic sulphate aerosol in China on the drought in the western-to-central US. Sci. Rep., 5, 14305, doi:10.1038/srep14305.

    • Search Google Scholar
    • Export Citation
  • Yu, J., T. Li, Z. Tan, and Z. Zhu, 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865877, doi:10.1007/s00382-015-2618-x.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., Y. Zhu, and R. Zhang, 2007: An Asian–Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability. Climate Dyn., 29, 293303, doi:10.1007/s00382-007-0236-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2270 903 85
PDF Downloads 1087 338 57