Ocean Heat Uptake and Interbasin Transport of the Passive and Redistributive Components of Surface Heating

Oluwayemi A. Garuba George Mason University, Fairfax, Virginia

Search for other papers by Oluwayemi A. Garuba in
Current site
Google Scholar
PubMed
Close
and
Barry A. Klinger George Mason University, Fairfax, Virginia

Search for other papers by Barry A. Klinger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global warming induces ocean circulation changes that not only can redistribute ocean reservoir temperature stratification but also change the total heat content anomaly of the ocean. Here all consequences of this process are referred to collectively as “redistribution.” Previous model studies of redistributive effects could not measure the net global contribution to the amount of ocean heat uptake by redistribution. In this study, a global ocean model experiment with abrupt increase in surface temperature is conducted with a new passive tracer formulation. This separates ocean heat uptake into contributions due to redistribution temperature and surface heat flux anomalies and those due to the passive advection and mixing of surface heat flux anomalies forced in the atmosphere. For a decline in the Atlantic meridional overturning circulation of about 40%, redistribution nearly doubles the Atlantic passive anomalous surface heat input and depth penetration of temperature anomalies. However, smaller increases in the Indian and Pacific Oceans cause the net global redistributive contribution to be only 25% of the passive contribution. Despite the much larger anomalous surface heat input in the Atlantic, the Pacific gains heat content anomaly similar to that in the Atlantic because of export from the Atlantic and Indian Oceans via the global conveyor belt. Of this interbasin heat transport, most of the passive component comes from the Indian Ocean and the redistributive component comes from the Atlantic.

Corresponding author address: Oluwayemi A. Garuba, George Mason University, Research Hall, 2B3, 4400 University Dr., Fairfax, VA 22030. E-mail: ogaruba@masonlive.gmu.edu

Abstract

Global warming induces ocean circulation changes that not only can redistribute ocean reservoir temperature stratification but also change the total heat content anomaly of the ocean. Here all consequences of this process are referred to collectively as “redistribution.” Previous model studies of redistributive effects could not measure the net global contribution to the amount of ocean heat uptake by redistribution. In this study, a global ocean model experiment with abrupt increase in surface temperature is conducted with a new passive tracer formulation. This separates ocean heat uptake into contributions due to redistribution temperature and surface heat flux anomalies and those due to the passive advection and mixing of surface heat flux anomalies forced in the atmosphere. For a decline in the Atlantic meridional overturning circulation of about 40%, redistribution nearly doubles the Atlantic passive anomalous surface heat input and depth penetration of temperature anomalies. However, smaller increases in the Indian and Pacific Oceans cause the net global redistributive contribution to be only 25% of the passive contribution. Despite the much larger anomalous surface heat input in the Atlantic, the Pacific gains heat content anomaly similar to that in the Atlantic because of export from the Atlantic and Indian Oceans via the global conveyor belt. Of this interbasin heat transport, most of the passive component comes from the Indian Ocean and the redistributive component comes from the Atlantic.

Corresponding author address: Oluwayemi A. Garuba, George Mason University, Research Hall, 2B3, 4400 University Dr., Fairfax, VA 22030. E-mail: ogaruba@masonlive.gmu.edu
Save
  • Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, doi:10.1038/ngeo2731.

    • Search Google Scholar
    • Export Citation
  • Banks, H. T., and J. M. Gregory, 2006: Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake. Geophys. Res. Lett., 33, L07608, doi:10.1029/2005GL025352.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1984: Accelerating the convergence to equilibrium of ocean–climate models. J. Phys. Oceanogr., 14, 666673, doi:10.1175/1520-0485(1984)014<0666:ATCTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, X., and K.-K. Tung, 2014: Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345, 897903, doi:10.1126/science.1254937.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, doi:10.1126/science.283.5410.2077.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241248, doi:10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 996 pp.

  • Klinger, B. A., and C. Cruz, 2009: Decadal response of global circulation to Southern Ocean zonal wind stress perturbation. J. Phys. Oceanogr., 39, 18881904, doi:10.1175/2009JPO4070.1.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608, doi:10.1029/2012GL052952.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363404, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8, 445449, doi:10.1038/ngeo2438.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Li, C., J.-S. von Storch, and J. Marotzke, 2013: Deep-ocean heat uptake and equilibrium climate response. Climate Dyn., 40, 10711086, doi:10.1007/s00382-012-1350-z.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, K. C. Armour, J. M. Campin, M. Kelley, and A. Romanou, 2015: Ocean’s role in the transient response of the climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, doi:10.1007/s00382-014-2308-0.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, doi:10.1038/nclimate1229.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., S. M. Griffies, M. Winton, W. G. Anderson, and J. L. Sarmiento, 2016: Mechanisms of Southern Ocean heat uptake and transport in a global eddying climate model. J. Climate, 29, 20592075, doi:10.1175/JCLI-D-15-0579.1.

    • Search Google Scholar
    • Export Citation
  • Schewe, J., and A. Levermann, 2010: The role of meridional density differences for a wind-driven overturning circulation. Climate Dyn., 34, 547556, doi:10.1007/s00382-009-0572-1.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., 1983: On equatorial waves and El Niño. II: Effects of air–sea thermal coupling. J. Phys. Oceanogr., 13, 18781893, doi:10.1175/1520-0485(1983)013<1878:OEWAEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R., and P. Gent, 2002: Reference manual for the Parallel Ocean Program (POP): Ocean component of the Community Climate System Model (CCSM2.0 and 3.0). Los Alamos National Laboratory Tech. Rep. LA-UR-02-2484, 75 pp. [Available online at http://www.ccsm.ucar.edu/models/ccsm3.0/pop.]

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., Y. Kamae, M. Yoshimori, A. Oka, M. Sato, M. Ishii, T. Mochizuki, and M. Kimoto, 2013: Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett., 40, 31753179, doi:10.1002/grl.50541.

    • Search Google Scholar
    • Export Citation
  • Winton, M., S. M. Griffies, B. L. Samuels, J. L. Sarmiento, and T. L. Frölicher, 2013: Connecting changing ocean circulation with changing climate. J. Climate, 26, 22682278, doi:10.1175/JCLI-D-12-00296.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and G. K. Vallis, 2012: The passive and active nature of ocean heat uptake in idealized climate change experiments. Climate Dyn., 38, 667684, doi:10.1007/s00382-011-1063-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1330 581 54
PDF Downloads 532 112 14