Sources of Uncertainty in Future Projections of the Carbon Cycle

Alan J. Hewitt Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Alan J. Hewitt in
Current site
Google Scholar
PubMed
Close
,
Ben B. B. Booth Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Ben B. B. Booth in
Current site
Google Scholar
PubMed
Close
,
Chris D. Jones Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Chris D. Jones in
Current site
Google Scholar
PubMed
Close
,
Eddy S. Robertson Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Eddy S. Robertson in
Current site
Google Scholar
PubMed
Close
,
Andy J. Wiltshire Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Andy J. Wiltshire in
Current site
Google Scholar
PubMed
Close
,
Philip G. Sansom Exeter Climate Systems, University of Exeter, Exeter, United Kingdom

Search for other papers by Philip G. Sansom in
Current site
Google Scholar
PubMed
Close
,
David B. Stephenson Exeter Climate Systems, University of Exeter, Exeter, United Kingdom

Search for other papers by David B. Stephenson in
Current site
Google Scholar
PubMed
Close
, and
Stan Yip Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China

Search for other papers by Stan Yip in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The inclusion of carbon cycle processes within CMIP5 Earth system models provides the opportunity to explore the relative importance of differences in scenario and climate model representation to future land and ocean carbon fluxes. A two-way analysis of variance (ANOVA) approach was used to quantify the variability owing to differences between scenarios and between climate models at different lead times. For global ocean carbon fluxes, the variance attributed to differences between representative concentration pathway scenarios exceeds the variance attributed to differences between climate models by around 2025, completely dominating by 2100. This contrasts with global land carbon fluxes, where the variance attributed to differences between climate models continues to dominate beyond 2100. This suggests that modeled processes that determine ocean fluxes are currently better constrained than those of land fluxes; thus, one can be more confident in linking different future socioeconomic pathways to consequences of ocean carbon uptake than for land carbon uptake. The contribution of internal variance is negligible for ocean fluxes and small for land fluxes, indicating that there is little dependence on the initial conditions. The apparent agreement in atmosphere–ocean carbon fluxes, globally, masks strong climate model differences at a regional level. The North Atlantic and Southern Ocean are key regions, where differences in modeled processes represent an important source of variability in projected regional fluxes.

Corresponding author address: Alan J. Hewitt, Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3PB, United Kingdom. E-mail: alan.j.hewitt@metoffice.gov.uk

This article is included in the (C4MIP) Climate–Carbon Interactions in the CMIP5 Earth System Models special collection.

Abstract

The inclusion of carbon cycle processes within CMIP5 Earth system models provides the opportunity to explore the relative importance of differences in scenario and climate model representation to future land and ocean carbon fluxes. A two-way analysis of variance (ANOVA) approach was used to quantify the variability owing to differences between scenarios and between climate models at different lead times. For global ocean carbon fluxes, the variance attributed to differences between representative concentration pathway scenarios exceeds the variance attributed to differences between climate models by around 2025, completely dominating by 2100. This contrasts with global land carbon fluxes, where the variance attributed to differences between climate models continues to dominate beyond 2100. This suggests that modeled processes that determine ocean fluxes are currently better constrained than those of land fluxes; thus, one can be more confident in linking different future socioeconomic pathways to consequences of ocean carbon uptake than for land carbon uptake. The contribution of internal variance is negligible for ocean fluxes and small for land fluxes, indicating that there is little dependence on the initial conditions. The apparent agreement in atmosphere–ocean carbon fluxes, globally, masks strong climate model differences at a regional level. The North Atlantic and Southern Ocean are key regions, where differences in modeled processes represent an important source of variability in projected regional fluxes.

Corresponding author address: Alan J. Hewitt, Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3PB, United Kingdom. E-mail: alan.j.hewitt@metoffice.gov.uk

This article is included in the (C4MIP) Climate–Carbon Interactions in the CMIP5 Earth System Models special collection.

Save
  • Arora, V. K., and Coauthors, 2013: Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Climate, 26, 52895314, doi:10.1175/JCLI-D-12-00494.1.

    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2012: CMIP5 output1 NCC NorESM1-M rcp85. World Data Center for Climate at DKRZ, accessed 1 January 2016, doi:10.1594/WDCC/CMIP5.NCCNMr8.

  • Booth, B. B. B., and Coauthors, 2012: High sensitivity of future global warming to land carbon cycle processes. Environ. Res. Lett., 7, 024002, doi:10.1088/1748-9326/7/2/024002.

    • Search Google Scholar
    • Export Citation
  • CCCma, 2015: CanESM2 model output prepared for CMIP5 rcp85. World Data Center for Climate at DKRZ, accessed 1 January 2016, doi:10.1594/WDCC/CMIP5.CCE2r8.

  • Ciais, P., and Coauthors, 2013: Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 465–570.

  • Cox, P., and D. Stephenson, 2007: Climate change—A changing climate for prediction. Science, 317, 207208, doi:10.1126/science.1145956.

    • Search Google Scholar
    • Export Citation
  • Cox, P., R. Betts, C. Jones, S. Spall, and I. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184187, doi:10.1038/35041539.

    • Search Google Scholar
    • Export Citation
  • Cox, P., D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke, 2013: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341344, doi:10.1038/nature11882.

    • Search Google Scholar
    • Export Citation
  • Davison, A. C., 2003: Statistical Models. Cambridge University Press, 726 pp.

  • Denman, K., and Coauthors, 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 499–587.

  • Denvil, S., and Coauthors, 2016: IPSL-CM5A-LR model output prepared for CMIP5 RCP8.5. World Data Center for Climate at DKRZ, accessed 1 January 2016, doi:10.1594/WDCC/CMIP5.IPILr8.

  • Dunne, J. P., and Coauthors, 2014: NOAA GFDL GFDL-ESM2G, rcp85 experiment output for CMIP5 AR5. World Data Center for Climate at DKRZ, accessed 1 January 2016, doi:10.1594/WDCC/CMIP5.NGEGr8.

  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353, doi:10.1175/JCLI3800.1.

    • Search Google Scholar
    • Export Citation
  • Gelman, A., 2005: Analysis of variance—Why it is more important than ever. Ann. Stat., 33, 131, doi:10.1214/009053604000001048.

  • Gelman, A., 2006: Prior distributions for variance parameters in hierarchical models (Comment on article by Browne and Draper). Bayesian Anal., 1, 515534.

    • Search Google Scholar
    • Export Citation
  • Gelman, A., and D. B. Rubin, 1992: Inference from iterative simulation using multiple sequences. Stat. Sci., 7, 457472, doi:10.1214/ss/1177011136.

    • Search Google Scholar
    • Export Citation
  • Gilks, W. R., S. Richardson, and D. J. Spiegelhalter, Eds., 1996: Markov Chain Monte Carlo. 2nd ed. Chapman and Hall, 512 pp.

  • Giorgetta, M., and Coauthors, 2012: CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-LR model: The rcp85 experiment. World Data Center for Climate at DKRZ, accessed 1 January 2016, doi:10.1594/WDCC/CMIP5.MXELr8.

  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hibbard, K. A., G. A. Meehl, P. Cox, and P. Friedlingstein, 2007: A strategy for climate change stabilization experiments. Eos, Trans. Amer. Geophys. Union, 88, 217221, doi:10.1029/2007EO200002.

    • Search Google Scholar
    • Export Citation
  • Hingray, B., and M. Saïd, 2014: Partitioning internal variability and model uncertainty components in a multimember multimodel ensemble of climate projections. J. Climate, 27, 67796798, doi:10.1175/JCLI-D-13-00629.1.

    • Search Google Scholar
    • Export Citation
  • Huntingford, C., and Coauthors, 2013: Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci., 6, 268273, doi:10.1038/ngeo1741.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500 to 2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117161, doi:10.1007/s10584-011-0153-2.

    • Search Google Scholar
    • Export Citation
  • JAMSTEC, AORI, and NIES, 2015: MIROC-ESM model output prepared for CMIP5 rcp85. World Data Center for Climate at DKRZ, accessed 1 January 2016, doi:10.1594/WDCC/CMIP5.MIMEr8.

  • Jones, C. D., M. Collins, P. M. Cox, and S. A. Spall, 2001: The carbon cycle response to ENSO: A coupled climate–carbon cycle model study. J. Climate, 14, 41134129, doi:10.1175/1520-0442(2001)014<4113:TCCRTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., P. M. Cox, and C. Huntingford, 2006: Climate–carbon cycle feedbacks under stabilization: Uncertainty and observational constraints. Tellus, 58B, 603613, doi:10.1111/j.1600-0889.2006.00215.x.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and Coauthors, 2013: Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 Earth system models under four representative concentration pathways. J. Climate, 26, 43984413, doi:10.1175/JCLI-D-12-00554.1.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., and Q. Wu, 2005: Detection of regional surface temperature trends. J. Climate, 18, 43374343, doi:10.1175/JCLI3565.1.

  • Lenton, A., and Coauthors, 2013: Sea–air CO2 fluxes in the Southern Ocean for the period 1990–2009. Biogeosciences, 10, 40374054, doi:10.5194/bg-10-4037-2013.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., J. C. Orr, P. Monfray, O. Aumont, and G. Madec, 2000: Interannual variability of the oceanic sink of CO2 from 1979 through 1997. Global Biogeochem. Cycles, 14, 12471265, doi:10.1029/1999GB900049.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2007: Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316, 17351738, doi:10.1126/science.1136188.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2015: Global carbon budget 2015. Earth Syst. Sci. Data, 7, 349396, doi:10.5194/essd-7-349-2015.

  • Madden, R. A., 1976: Estimates of the natural variability of time-averaged sea-level pressure. Mon. Wea. Rev., 104, 942952, doi:10.1175/1520-0493(1976)104<0942:EOTNVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marti, O., and Coauthors, 2010: Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dyn., 34, 126, doi:10.1007/s00382-009-0640-6.

    • Search Google Scholar
    • Export Citation
  • Masui, T., and Coauthors, 2011: An emission pathway to stabilize at 6 W m−2 of radiative forcing. Climatic Change, 109, 5976, doi:10.1007/s10584-011-0150-5.

    • Search Google Scholar
    • Export Citation
  • Monteiro, P. M. S., and Coauthors, 2009: A global sea surface carbon observing system: Assessment of changing sea surface CO2 and air–sea CO2 fluxes. Proc. OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, European Space Agency, ESA Publ. WPP-306, doi:10.5270/OceanObs09.cwp.64.

  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Northrop, P. J., and R. E. Chandler, 2014: Quantifying sources of uncertainty in projections of future climate. J. Climate, 27, 87938808, doi:10.1175/JCLI-D-14-00265.1.

    • Search Google Scholar
    • Export Citation
  • Plattner, G. K., and Coauthors, 2008: Long-term climate commitments projected with climate–carbon cycle models. J. Climate, 21, 27212751, doi:10.1175/2007JCLI1905.1.

    • Search Google Scholar
    • Export Citation
  • Plummer, M., 2015: JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. R JAGS 3.4.0. [Available online at http://mcmc-jags.sourceforge.net.]

  • R Core Team, 2013: R: A language and environment for statistical computing. R Foundation for Statistical Computing. [Available online at http://www.R-project.org/.]

  • Riahi, K., and Coauthors, 2011: RCP8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 3357, doi:10.1007/s10584-011-0149-y.

    • Search Google Scholar
    • Export Citation
  • Roy, T., and Coauthors, 2011: Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: A multimodel linear feedback analysis. J. Climate, 24, 23002318, doi:10.1175/2010JCLI3787.1.

    • Search Google Scholar
    • Export Citation
  • Russell, J. L., R. J. Stouffer, and K. W. Dixon, 2006: Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. J. Climate, 19, 45604575, doi:10.1175/JCLI3869.1.

    • Search Google Scholar
    • Export Citation
  • Sanderson, M., J. Hughes, and C. Jones, 2014: HadGEM2–ES model output prepared for CMIP5 RCP8.5. World Data Center for Climate at DKRZ, accessed 1 January 2016, doi:10.1594/WDCC/CMIP5.MOGEr8.

  • Sansom, P. G., D. B. Stephenson, C. A. T. Ferro, G. Zappa, and L. Shaffrey, 2013: Simple uncertainty frameworks for selecting weighting schemes and interpreting multimodel ensemble climate change experiments. J. Climate, 26, 40174037, doi:10.1175/JCLI-D-12-00462.1.

    • Search Google Scholar
    • Export Citation
  • Schuster, U., and A. J. Watson, 2007: A variable and decreasing sink for atmospheric CO2 in the North Atlantic. J. Geophys. Res., 112, C11006, doi:10.1029/2006JC003941.

    • Search Google Scholar
    • Export Citation
  • Searle, S. R., 1987: Linear Models for Unbalanced Design. Wiley, 536 pp.

  • Sitch, S., and Coauthors, 2008: Evaluation of the terrestrial carbon cycle, future plant geography and climate–carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Global Change Biol., 14, 20152039, doi:10.1111/j.1365-2486.2008.01626.x.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., M. Collins, J. C. Rougier, and R. E. Chandler, 2012: Statistical problems in the probabilistic prediction of climate change. Environmetrics, 23, 364372, doi:10.1002/env.2153.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2002: Global sea–air CO2 flux based on climatological surface ocean ρCO2, and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 16011622, doi:10.1016/S0967-0645(02)00003-6.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2013: CMIP5 Coupled Model Intercomparison Project: Standard output document. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf.]

  • Taylor, K. E., R. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thomson, A. M., and Coauthors, 2011: RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109, 7794, doi:10.1007/s10584-011-0151-4.

    • Search Google Scholar
    • Export Citation
  • Tingley, M. P., 2012: A Bayesian ANOVA scheme for calculating climate anomalies, with applications to the instrumental temperature record. J. Climate, 25, 777791, doi:10.1175/JCLI-D-11-00008.1.

    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2011a: RCP2.6: Exploring the possibility to keep global mean temperature increase below 2°C. Climatic Change, 109, 95116, doi:10.1007/s10584-011-0152-3.

    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2011b: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. Zwiers, 2001: Statistical Analysis in Climate Research. Cambridge University Press, 496 pp.

  • Yip, S., C. A. T. Ferro, D. B. Stephenson, and E. Hawkins, 2011: A simple, coherent framework for partitioning uncertainty in climate predictions. J. Climate, 24, 46344643, doi:10.1175/2011JCLI4085.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6044 3934 232
PDF Downloads 675 150 11