The Transient Response of the Southern Ocean to Stratospheric Ozone Depletion

William J. M. Seviour Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland

Search for other papers by William J. M. Seviour in
Current site
Google Scholar
PubMed
Close
,
Anand Gnanadesikan Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland

Search for other papers by Anand Gnanadesikan in
Current site
Google Scholar
PubMed
Close
, and
Darryn W. Waugh Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland

Search for other papers by Darryn W. Waugh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent studies have suggested that the response of the Southern Ocean to stratospheric ozone depletion is nonmonotonic in time; consisting of an initial cooling followed by a long-term warming. This result may be significant for the attribution of observed Southern Ocean temperature and sea ice trends, but the time scale and magnitude of the response is poorly constrained, with a wide spread among climate models. Furthermore, a long-lived initial cooling period has only been observed in a model with idealized geometry and lacking an explicit representation of ozone. Here the authors calculate the transient response of the Southern Ocean to a step-change in ozone in a comprehensive coupled climate model, GFDL-ESM2Mc. The Southern Ocean responds to ozone depletion with an initial cooling, lasting 25 yr, followed by a warming. The authors extend previous studies to investigate the dependence of the response on the ozone forcing as well as the regional pattern of this response. The response of the Southern Ocean relative to natural variability is shown to be largely independent of the initial state. However, the magnitude of this response is much less than that of natural variability found in the model, which limits its influence and detectability.

Corresponding author address: William Seviour, Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218. E-mail: wseviou1@jhu.edu

Abstract

Recent studies have suggested that the response of the Southern Ocean to stratospheric ozone depletion is nonmonotonic in time; consisting of an initial cooling followed by a long-term warming. This result may be significant for the attribution of observed Southern Ocean temperature and sea ice trends, but the time scale and magnitude of the response is poorly constrained, with a wide spread among climate models. Furthermore, a long-lived initial cooling period has only been observed in a model with idealized geometry and lacking an explicit representation of ozone. Here the authors calculate the transient response of the Southern Ocean to a step-change in ozone in a comprehensive coupled climate model, GFDL-ESM2Mc. The Southern Ocean responds to ozone depletion with an initial cooling, lasting 25 yr, followed by a warming. The authors extend previous studies to investigate the dependence of the response on the ozone forcing as well as the regional pattern of this response. The response of the Southern Ocean relative to natural variability is shown to be largely independent of the initial state. However, the magnitude of this response is much less than that of natural variability found in the model, which limits its influence and detectability.

Corresponding author address: William Seviour, Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218. E-mail: wseviou1@jhu.edu
Save
  • Bitz, C. M., and L. M. Polvani, 2012: Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys. Res. Lett., 39, L20705, doi:10.1029/2012GL053393.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., and D. W. J. Thompson, 2008: Observations of large-scale ocean–atmosphere interaction in the Southern Hemisphere. J. Climate, 21, 1244–1259, doi:10.1175/2007JCLI1809.1.

    • Search Google Scholar
    • Export Citation
  • Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11 267–11 292, doi:10.5194/acp-11-11267-2011.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., and F. Nishio, 2008: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res., 113, C02S07, doi:10.1029/2007JC004257.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., J. B. Palter, E. D. Galbraith, R. Bernardello, and I. Marinov, 2014: Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Climate Change, 4, 278–282, doi:10.1038/nclimate2132.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 6646–6665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, C. M. Bitz, S. Solomon, and R. A. Plumb, 2015: Antarctic Ocean and sea ice response to ozone depletion: A two-time-scale problem. J. Climate, 28, 1206–1226, doi:10.1175/JCLI-D-14-00313.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 1145–1165, doi:10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., and Coauthors, 2011: Climate variability and radiocarbon in the CM2Mc Earth system model. J. Climate, 24, 4230–4254, doi:10.1175/2011JCLI3919.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2016: Effects of Southern Hemisphere wind changes on the meridional overturning circulation in ocean models. Annu. Rev. Mar. Sci., 8, 79–94, doi:10.1146/annurev-marine-122414-033929.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and S.-W. Son, 2014: Quantifying the summertime response of the austral jet stream and Hadley cell to stratospheric ozone and greenhouse gases. J. Climate, 27, 5538–5559, doi:10.1175/JCLI-D-13-00539.1.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., M.-A. Pradal, and R. Abernathey, 2015: Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake. Geophys. Res. Lett., 42, 4249–4255, doi:10.1002/2015GL064100.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., W. Lefebvre, A. de Montety, E. Crespin, and A. H. Orsi, 2009: Consistent past half-century trends in the atmosphere, the sea ice and the ocean at high southern latitudes. Climate Dyn., 33, 999–1016, doi:10.1007/s00382-008-0500-9.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., L. M. Polvani, G. Tselioudis, Y. Wu, and M. D. Zelinka, 2013: The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere. Geophys. Res. Lett., 40, 3688–3692, doi:10.1002/grl.50675.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 3043–3057, doi:10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hande, L. B., S. T. Siems, and M. J. Manton, 2012: Observed trends in wind speed over the Southern Ocean. Geophys. Res. Lett., 39, L11802, doi:10.1029/2012GL051734.

    • Search Google Scholar
    • Export Citation
  • Heuzé, C., J. K. Ridley, D. Calvert, D. P. Stevens, and K. J. Heywood, 2015: Increasing vertical mixing to reduce Southern Ocean deep convection in NEMO3.4. Geosci. Model Dev., 8, 3119–3130, doi:10.5194/gmd-8-3119-2015.

    • Search Google Scholar
    • Export Citation
  • Kjellsson, J., and Coauthors, 2015: Model sensitivity of the Weddell and Ross Seas, Antarctica, to vertical mixing and freshwater forcing. Ocean Modell., 94, 141–152, doi:10.1016/j.ocemod.2015.08.003.

    • Search Google Scholar
    • Export Citation
  • Kostov, Y., J. Marshall, U. Hausmann, K. C. Armour, D. Ferreira, and M. M. Holland, 2016: Fast and slow responses of southern ocean sea surface temperature to SAM in coupled climate models. Climate Dyn., doi:10.1007/s00382-016-3162-z, in press.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341–364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lefebvre, W., and H. Goosse, 2008: An analysis of the atmospheric processes driving the large-scale winter sea ice variability in the Southern Ocean. J. Geophys. Res., 113, C02004, doi:10.1029/2006JC004032.

    • Search Google Scholar
    • Export Citation
  • Lefebvre, W., H. Goosse, R. Timmermann, and T. Fichefet, 2004: Influence of the southern annular mode on the sea ice–ocean system. J. Geophys. Res., 109, C09005, doi:10.1029/2004JC002403.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., K. C. Armour, J. R. Scott, Y. Kostov, U. Hausmann, D. Ferreira, T. G. Shepherd, and C. M. Bitz, 2014: The ocean’s role in polar climate change: Asymmetric arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos. Trans. Roy. Soc. London, 372A, 20130040, doi:10.1098/rsta.2013.0040.

    • Search Google Scholar
    • Export Citation
  • Martin, T., W. Park, and M. Latif, 2013: Multi-centennial variability controlled by Southern Ocean convection in the Kiel climate model. Climate Dyn., 40, 2005–2022, doi:10.1007/s00382-012-1586-7.

    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., E. Shuckburgh, N. Bruneau, J. B. Sallee, T. J. Bracegirdle, and Z. Wang, 2012: Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. J. Geophys. Res., 117, C12008, doi:10.1029/2012JC008412.

    • Search Google Scholar
    • Export Citation
  • Met Office, 2010: Iris: A Python library for analysing and visualising meteorological and oceanographic data sets, version 1.9. Met Office. [Available online at http://scitools.org.uk/.]

  • Neely, R. R., D. R. Marsh, K. L. Smith, S. M. Davis, and L. M. Polvani, 2014: Biases in Southern Hemisphere climate trends induced by coarsely specifying the temporal resolution of stratospheric ozone. Geophys. Res. Lett., 41, 8602–8610, doi:10.1002/2014GL061627.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and D. J. Cavalieri, 2012: Antarctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 871–880, doi:10.5194/tc-6-871-2012.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795–812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Pradal, M.-A., and A. Gnanadesikan, 2014: How does the Redi parameter for mesoscale mixing impact global climate in an Earth system model? J. Adv. Model. Earth Syst., 6, 586–601, doi:10.1002/2013MS000273.

    • Search Google Scholar
    • Export Citation
  • Previdi, M., L. M. Polvani, and M. Previdi, 2014: Climate system response to stratospheric ozone depletion and recovery. Quart. J. Roy. Meteor. Soc., 140, 2401–2419, doi:10.1002/qj.2330.

    • Search Google Scholar
    • Export Citation
  • Purich, A., W. Cai, M. H. England, and T. Cowan, 2016: Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat. Commun., 7, 10409, doi:10.1038/ncomms10409.

    • Search Google Scholar
    • Export Citation
  • Redi, M., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1154–1158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J. Climate, 19, 4457–4486, doi:10.1175/JCLI3843.1.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. C. Fyfe, 2010: Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys. Res. Lett., 37, L18502, doi:10.1029/2010GL044301.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. C. Fyfe, 2014: The Antarctic sea ice response to the ozone hole in climate models. J. Climate, 27, 1336–1342, doi:10.1175/JCLI-D-13-00590.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., L. M. Polvani, and D. R. Marsh, 2012: Mitigation of 21st century Antarctic sea ice loss by stratospheric ozone recovery. Geophys. Res. Lett., 39, L20701, doi:10.1029/2012GL053325.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., L. M. Polvani, K. L. Smith, and R. P. Abernathey, 2015a: The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1(WACCM). Geophys. Res. Lett., 42, 5547–5555, doi:10.1002/2015GL064744.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Kinnison, J. Bandoro, and R. Garcia, 2015b: Simulation of polar ozone depletion: An update. J. Geophys. Res. Atmos., 120, 7958–7974, doi:10.1002/2015JD023365.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, 6–11, doi:10.1029/2012GL052810.

    • Search Google Scholar
    • Export Citation
  • Thomas, J. L., D. Waugh, and A. Gnanadesikan, 2015: Decadal variability in the Southern Hemisphere extratropical circulation: Recent trends and natural variability. Geophys. Res. Lett., 42, 5508–5515, doi:10.1002/2015GL064521.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895–899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741–749, doi:10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 1473–1484, doi:10.1175/JCLI-D-12-00068.1.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2000: Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J. Climate, 13, 562–578, doi:10.1175/1520-0442(2000)013<0562:SMZWVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 3541–3564, doi:10.1175/MWR3466.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1079 591 54
PDF Downloads 271 57 4