Insights into Earth’s Energy Imbalance from Multiple Sources

Kevin E. Trenberth National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Kevin E. Trenberth in
Current site
Google Scholar
PubMed
Close
,
John T. Fasullo National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by John T. Fasullo in
Current site
Google Scholar
PubMed
Close
,
Karina von Schuckmann Mercator Océan, Ramonville St. Agne, France

Search for other papers by Karina von Schuckmann in
Current site
Google Scholar
PubMed
Close
, and
Lijing Cheng International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Lijing Cheng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The current Earth’s energy imbalance (EEI) can best be estimated from changes in ocean heat content (OHC), complemented by top-of-atmosphere (TOA) radiation measurements and an assessment of the small non-ocean components. Sustained observations from the Argo array of autonomous profiling floats enable near-global estimates of OHC since 2005, which reveal considerable cancellation of variations in the upper 300 m. An analysis of the monthly contributions to EEI from non-ocean components (land and ice) using the Community Earth System Model (CESM) Large Ensemble reveals standard deviations of 0.3–0.4 W m−2 (global); largest values occur in August, but values are below 0.75 W m−2 greater than 95% of the time. Global standard deviations of EEI of 0.64 W m−2 based on top-of-atmosphere observations therefore substantially constrain ocean contributions, given by the tendencies of OHC. Instead, monthly standard deviations of many Argo-based OHC tendencies are 6–13 W m−2, and nonphysical fluctuations are clearly evident. It is shown that an ocean reanalysis with multivariate dynamical data assimilation features much better agreement with TOA radiation, and 44% of the vertically integrated short-term OHC trend for 2005–14 of 0.8 ± 0.2 W m−2 (globally) occurs below 700-m depth. Largest warming occurs from 20° to 50°S, especially over the southern oceans, and near 40°N in all ocean analyses. The EEI is estimated to be 0.9 ± 0.3 W m−2 for 2005–14.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Kevin E. Trenberth, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: trenbert@ucar.edu

Abstract

The current Earth’s energy imbalance (EEI) can best be estimated from changes in ocean heat content (OHC), complemented by top-of-atmosphere (TOA) radiation measurements and an assessment of the small non-ocean components. Sustained observations from the Argo array of autonomous profiling floats enable near-global estimates of OHC since 2005, which reveal considerable cancellation of variations in the upper 300 m. An analysis of the monthly contributions to EEI from non-ocean components (land and ice) using the Community Earth System Model (CESM) Large Ensemble reveals standard deviations of 0.3–0.4 W m−2 (global); largest values occur in August, but values are below 0.75 W m−2 greater than 95% of the time. Global standard deviations of EEI of 0.64 W m−2 based on top-of-atmosphere observations therefore substantially constrain ocean contributions, given by the tendencies of OHC. Instead, monthly standard deviations of many Argo-based OHC tendencies are 6–13 W m−2, and nonphysical fluctuations are clearly evident. It is shown that an ocean reanalysis with multivariate dynamical data assimilation features much better agreement with TOA radiation, and 44% of the vertically integrated short-term OHC trend for 2005–14 of 0.8 ± 0.2 W m−2 (globally) occurs below 700-m depth. Largest warming occurs from 20° to 50°S, especially over the southern oceans, and near 40°N in all ocean analyses. The EEI is estimated to be 0.9 ± 0.3 W m−2 for 2005–14.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Kevin E. Trenberth, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: trenbert@ucar.edu
Save
  • Abraham, J. P., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450483, doi:10.1002/rog.20022.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013a: Evaluation of the ECMWF Ocean Reanalysis ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2013b: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, doi:10.1002/grl.50382.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., and Coauthors, 2015: The Ocean Reanalyses Intercomparison Project (ORA-IP). J. Oper. Oceanogr., 8, s80s97, doi:10.1080/1755876X.2015.1022329.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, S. S. Drijfhout, B. Wouters, and C. A. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci., 6, 376379, doi:10.1038/ngeo1767.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2009: World Ocean Database 2009. NOAA Atlas NESDIS 66, 216 pp.

  • Boyer, T. P., and Coauthors, 2016: Sensitivity of global ocean heat content estimates to mapping methods, XBT bias corrections, and baseline climatology. J. Climate, 29, 48174842, doi:10.1175/JCLI-D-15-0801.1.

    • Search Google Scholar
    • Export Citation
  • Cabanes, C., and Coauthors, 2013: The CORA dataset: Validation and diagnostics of in-situ ocean temperature and salinity measurements. Ocean Sci., 9, 118, doi:10.5194/os-9-1-2013.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and J. Zhu, 2016: Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variation. J. Climate, 29, 53935416, doi:10.1175/JCLI-D-15-0730.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., J. Zhu, and J. Abraham, 2015: Global upper ocean heat content estimation: Recent progress and the remaining challenges. Atmos. Ocean. Sci. Lett., 8, 333338, doi:10.3878/AOSL20150031.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and Coauthors, 2016: XBT science: Assessment of instrumental biases and errors. Bull. Amer. Meteor. Soc., 97, 924933, doi:10.1175/BAMS-D-15-00031.1.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and Coauthors, 2011: Revisiting the Earth’s sea‐level and energy budgets from 1961 to 2008. Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794.

    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res., 118, 67046716, doi:10.1002/2013JC009067.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann, 2011: Earth’s energy imbalance and implications. Atmos. Chem. Phys., 11, 13 42113 449, doi:10.5194/acp-11-13421-2011.

    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Ohira, K. Sato, and T. Suga, 2010: Improved description of global mixed-layer depth using Argo profiling floats. J. Oceanogr., 66, 773787, doi:10.1007/s10872-010-0063-3.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Jacobs, S. S., A. Jenkins, C. F. Giulivi, and P. Dutrieux, 2011: Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci., 4, 519523, doi:10.1038/ngeo1188.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Llovel, W., J. K. Willis, F. K. Landerer, and I. Fukumori, 2014: Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat. Climate Change, 4, 10311035, doi:10.1038/nclimate2387.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., J. M. Lyman, G. C. Johnson, R. P. Allan, D. R. Doelling, T. Wong, B. J. Soden, and G. L. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110113, doi:10.1038/ngeo1375.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., and Coauthors, 2016: Ocean heat content variability and change in an ensemble of ocean reanalyses. Climate Dyn., doi:10.1007/s00382-015-2801-0, in press.

    • Search Google Scholar
    • Export Citation
  • Purkey, S., and G. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, doi:10.1175/2010JCLI3682.1.

    • Search Google Scholar
    • Export Citation
  • Rietbroek, R., S.-E. Brunnabend, J. Kusche, J. Schröter, and C. Dahle, 2016: Revisiting the contemporary sea-level budget on global and regional scales. Proc. Natl. Acad. Sci. USA, 113, 15041509, doi:10.1073/pnas.1519132113.

    • Search Google Scholar
    • Export Citation
  • Riser, S. C., and Coauthors, 2016: Fifteen years of ocean observations with the global Argo array. Nat. Climate Change, 6, 145150, doi:10.1038/nclimate2872.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, doi:10.1016/j.pocean.2009.03.004.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2011: The global ocean imprint of ENSO. Geophys. Res. Lett., 38, L13606, doi:10.1029/2011GL047992.

  • Roemmich, D., and Coauthors, 2009: Argo: The challenge of continuing 10 years of progress. Oceanography, 22, 4655, doi:10.5670/oceanog.2009.65.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, doi:10.1038/nclimate2513.

    • Search Google Scholar
    • Export Citation
  • Roquet, F., and Coauthors, 2013: Estimates of the Southern Ocean general circulation improved by animal-borne instruments. Geophys. Res. Lett., 40, 61766180, doi:10.1002/2013GL058304.

    • Search Google Scholar
    • Export Citation
  • Tietsche, S., M. Balmaseda, H. Zuo, and K. Mogensen, 2016: Arctic sea ice in the global eddy-permitting ocean reanalysis ORAP5. Climate Dyn., doi:10.1007/s00382-015-2673-3, in press.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2009: An imperative for climate change planning: Tracking Earth’s global energy. Curr. Opin. Environ. Sustainability, 1, 1927, doi:10.1016/j.cosust.2009.06.001.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Tracking Earth’s energy. Science, 328, 316317, doi:10.1126/science.1187272.

  • Trenberth, K. E., and J. T. Fasullo, 2013: Regional energy and water cycles: Transports from ocean to land. J. Climate, 26, 78377851, doi:10.1175/JCLI-D-13-00008.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 31293144, doi:10.1175/JCLI-D-13-00294.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Y. Zhang, J. T. Fasullo, and S. Taguchi, 2015a: Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth. J. Geophys. Res. Atmos., 120, 36423659, doi:10.1002/2014JD022887.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Y. Zhang, and J. T. Fasullo, 2015b: Relationships among top-of-atmosphere radiation and atmospheric state variables in observations and CESM. J. Geophys. Res. Atmos., 120, 10 07410 090, doi:10.1002/2015JD023381.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and P.-Y. Le Traon, 2011: How well can we derive global ocean indicators from Argo data? Ocean Sci., 7, 783791, doi:10.5194/os-7-783-2011.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., J.-B. Sallée, D. Chambers, P.-Y. Le Traon, C. Cabanes, F. Gaillard, S. Speich, and M. Hamon, 2014: Consistency of the current global ocean observing systems from an Argo perspective. Ocean Sci., 10, 547557, doi:10.5194/os-10-547-2014.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and Coauthors, 2016: An imperative to monitor Earth’s energy imbalance. Nat. Climate Change, 6, 138144, doi:10.1038/nclimate2876.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S., D. Roemmich, D. Monselesan, J. Church, and J. Gilson, 2016: Ocean temperatures chronicle the ongoing warming of Earth. Nat. Climate Change, 6, 116118, doi:10.1038/nclimate2924.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., D. P. Chambers, and R. S. Nerem, 2008: Assessing the globally averaged sea level budget on seasonal to interannual timescales. J. Geophys. Res., 113, C06015, doi:10.1029/2007JC004517.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., J. M. Lyman, G. C. Johnson, and J. Gilson, 2009: In situ data biases and recent ocean heat content variability. J. Atmos. Oceanic Technol., 26, 846852. doi:10.1175/2008JTECHO608.1.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., and Coauthors, 2012: A comparative analysis of upper-ocean heat content variability from an ensemble of operational ocean reanalyses. J. Climate, 25, 69056929, doi:10.1175/JCLI-D-11-00542.1.

    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, and K. Mogensen, 2016: The new eddy-permitting ORAP5 ocean reanalysis: Description, evaluation and uncertainties in climate signals. Climate Dyn., doi:10.1007/s00382-015-2675-1, in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4296 954 97
PDF Downloads 1679 261 26