• Austin, R. T., 2007: Level 2b radar-only cloud water content (2B-CWC-RO) process description document. CloudSat Data Processing Center Rep., 24 pp. [Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-CWC-RO_PDICD.P_R04.20071021.pdf.]

  • Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 4569, doi:10.1016/j.atmosres.2012.04.010.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., P. Hill, K. Furtado, P. Field, and J. Manners, 2014: A coupled cloud physics–radiation parameterization of the bulk optical properties of cirrus and its impact on the Met Office Unified Model Global Atmosphere 5.0 configuration. J. Climate, 27, 77257752, doi:10.1175/JCLI-D-13-00700.1.

    • Search Google Scholar
    • Export Citation
  • Berry, E., and G. G. Mace, 2014: Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data. J. Geophys. Res. Atmos., 119, 94929508, doi:10.1002/2014JD021458.

    • Search Google Scholar
    • Export Citation
  • Bowker, D. E., R. E. Davis, D. L. Myrick, K. Stacy, and T. J. Jones, 1985: Spectral reflectances of natural targets for use in remote sensing studies. NASA Ref. Publ. 1139, 181 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850022138.pdf.]

  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, T., W. B. Rossow, and Y. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286, doi:10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., H. Chepfer, V. Noel, A. Delaval, M. Haeffelin, P. Dubuisson, and P. Yang, 2004: Improving retrievals of cirrus cloud particle size coupling lidar and three-channel radiometric techniques. Mon. Wea. Rev., 132, 16841700, doi:10.1175/1520-0493(2004)132<1684:IROCCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Choi, Y.-S., and C.-H. Ho, 2006: Radiative effect of cirrus with different optical properties over the tropics in MODIS and CERES observations. Geophys. Res. Lett., 33, L21811, doi:10.1029/2006GL027403.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2008: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res., 113, D07204, doi:10.1029/2007JD009000.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and H. Okamoto, 2010: Tropical composition, cloud and climate coupling experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115, D00J15, doi:10.1029/2009JD013104.

    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and R. P. Lawson, 2013: Evaluation of several A-Train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52, 10141030, doi:10.1175/JAMC-D-12-054.1.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, doi:10.1175/JTECH-D-12-00136.1.

    • Search Google Scholar
    • Export Citation
  • Eliasson, S., S. A. Buehler, M. Milz, P. Eriksson, and V. O. John, 2011: Assessing observed and modelled spatial distributions of ice water path using satellite data. Atmos. Chem. Phys., 11, 375391, doi:10.5194/acp-11-375-2011.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parameterization of ice particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 19972017, doi:10.1256/qj.04.134.

    • Search Google Scholar
    • Export Citation
  • Francis, P. N., P. Hignett, and A. Macke, 1998: The retrieval of cirrus cloud properties from aircraft multi-spectral reflectance measurements during EUCREX’93. Quart. J. Roy. Meteor. Soc., 124, 12731291, doi:10.1002/qj.49712454812.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, doi:10.1175/1520-0469(1992)049<2139:%20OTCDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haladay, T., and G. Stephens, 2009: Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observations. J. Geophys. Res., 114, D00A25, doi:10.1029/2008JD010675.

    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95, 18 68718 703, doi:10.1029/JD095iD11p18687.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. H. Vonder Haar, T. L’Ecuyer, and D. Henderson, 2013: Radiative heating characteristics of Earth’s cloudy atmosphere from vertically resolved active sensors. Geophys. Res. Lett., 40, 624630, doi:10.1002/grl.50145.

    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., T. L’Ecuyer, G. Stephens, P. Partain, and M. Sekiguchi, 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853871, doi:10.1175/JAMC-D-12-025.1.

    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, doi:10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59, 329, doi:10.1175/1520-0469(2002)059<0003:AGAFDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., 2006: Fast approximate calculation of multiply scattered lidar returns. Appl. Opt., 45, 59845992, doi:10.1364/AO.45.005984.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in the evaluation of a mesoscale model. J. Appl. Meteor. Climatol., 45, 301317, doi:10.1175/JAM2340.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., and G. Liu, 2015: The characteristics of ice cloud properties derived from CloudSat and CALIPSO measurements. J. Climate, 28, 38803901, doi:10.1175/JCLI-D-14-00666.1.

    • Search Google Scholar
    • Export Citation
  • Key, J., P. Yang, B. Baum, and S. Nasiri, 2002: Parameterization of shortwave ice cloud optical properties for various particle habits. J. Geophys. Res., 107, 4181, doi:10.1029/2001JD000742.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and K. Sassen, 2002: Microphysical processes in cirrus and their impact on radiation. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 397–432.

  • L’Ecuyer, T. S., and G. L. Stephens, 2002: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41, 272285, doi:10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr., 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.

    • Search Google Scholar
    • Export Citation
  • Lee, J., P. Yang, A. E. Dessler, B. C. Gao, and S. Platnick, 2009: Distribution and radiative forcing of tropical thin cirrus clouds. J. Atmos. Sci., 66, 37213731, doi:10.1175/2009JAS3183.1.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., and Coauthors, 2012: An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res., 117, D16105, doi:10.1029/2012JD017640.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., D. E. Waliser, G. Stephens, S. Lee, T. L’Ecuyer, S. Kato, N. Loeb, and H.-Y. Ma, 2013: Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J. Geophys. Res. Atmos., 118, 81668184, doi:10.1002/jgrd.50378.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199, doi:10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. Academic Press, 583 pp.

  • Liu, C. L., and A. J. Illingworth, 2000: Toward more accurate retrievals of ice water content from radar measurement of clouds. J. Appl. Meteor., 39, 11301146, doi:10.1175/1520-0450(2000)039<1130:TMAROI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mayer, B., and A. Kylling, 2005: Technical note: The libRadtran software package for radiative transfer calculations—description and examples of use. Atmos. Chem. Phys., 5, 18551877, doi:10.5194/acp-5-1855-2005.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., M. D. King, S. Platnick, C. B. Schaaf, and F. Gao, 2005: Spatially complete global spectral surface albedos: Value-added datasets derived from Terra MODIS land products. IEEE Trans. Geosci. Remote Sens., 43, 144158, doi:10.1109/TGRS.2004.838359.

    • Search Google Scholar
    • Export Citation
  • Partain, P., 2004: CloudSat ECMWF-AUX auxiliary data process description and interface control document. Cooperative Institute for Research in the Atmosphere Rep., 8 pp. [Available online at http://cswww.cira.colostate.edu/ICD/ECMWF-AUX/ECMWF-AUX_PDICD_3.0.pdf.]

  • Peng, G., W. N. Meier, D. J. Scott, and M. H. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311318, doi:10.5194/essd-5-311-2013.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Y. Zhang, 2010: Evaluation of a statistical model of cloud vertical structure using combined CloudSat and CALIPSO cloud layer profiles. J. Climate, 23, 66416653, doi:10.1175/2010JCLI3734.1.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 12751285, doi:10.1175/1520-0450(1992)031<1275:STCLDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). J. Geophys. Res., 113, D00A12, doi:10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. C., and G. G. Mace, 2010: Co-occurrence statistics of tropical tropopause layer cirrus with lower cloud layers as derived from CloudSat and CALIPSO data. J. Geophys. Res., 115, D20215, doi:10.1029/2009JD012778.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S. C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 25022509, doi:10.1364/AO.27.002502.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. W. Stackhouse Jr., and F. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback. J. Atmos. Sci., 47, 17421754, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Sun, W., G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, 2011: A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data. J. Geophys. Res., 116, D22207, doi:10.1029/2010JG001573.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., D. M. Winker, and K. A. Powell, 2005: CALIOP algorithm theoretical basis document. Part 2: Feature detection and layer properties algorithms. NASA CALIPSO Tech. Rep. PC-SCI-202 Part 2, 87 pp. [Available online at http://calipsovalidation.hamptonu.edu/PC-SCI-202_Part2_rev1x01.pdf.]

  • Waliser, D. E., and Coauthors, 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., D. Vane, G. Stephens, and D. Reinke, 2012: Level 2 combined radar and lidar cloud scenario classification product process description and interface control document. California Institute of Technology Jet Propulsion Laboratory Rep., 61 pp. [Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-CLDCLASS-LIDAR_PDICD.P_R04.20120522.pdf.]

  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., J. Pelon, and M. P. McCormick, 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4893), doi:10.1117/12.466539.

  • Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105, 46994718, doi:10.1029/1999JD900755.

    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 55125523, doi:10.1364/AO.44.005512.

    • Search Google Scholar
    • Export Citation
  • Yi, B., P. Yang, B. A. Baum, T. L’Ecuyer, L. Oreopoulos, E. J. Mlawer, A. J. Heymsfield, and K. N. Liou, 2013: Influence of ice particle surface roughening on the global cloud radiative effect. J. Atmos. Sci., 70, 27942807, doi:10.1175/JAS-D-13-020.1.

    • Search Google Scholar
    • Export Citation
  • Young, S. A., D. M. Winker, M. A. Vaughan, Y. Hu, and R. E. Kuehn, 2008: CALIOP algorithm theoretical basis document. Part 4: Extinction retrieval algorithms. NASA CALIPSO Tech. Rep. PC-SCI-202 Part 4, 63 pp. [Available online at http://ccplot.org/pub/resources/CALIPSO/CALIOP%20Algorithm%20Theoretical%20Basis%20Document/PC-SCI-202.04%20Extinction%20Retrieval%20Algorithms.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 43
PDF Downloads 41 41 41

Assessing the Radiative Effects of Global Ice Clouds Based on CloudSat and CALIPSO Measurements

View More View Less
  • 1 Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida
  • | 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Restricted access

Abstract

Although it is well established that cirrus warms Earth, the radiative effect of the entire spectrum of ice clouds is not well understood. In this study, the role of all ice clouds in Earth’s radiation budget is investigated by performing radiative transfer modeling using ice cloud properties retrieved from CloudSat and CALIPSO measurements as inputs. Results show that, for the 2008 period, the warming effect (~21.8 ± 5.4 W m−2) induced by ice clouds trapping longwave radiation exceeds their cooling effect (~−16.7 ± 1.7 W m−2) caused by shortwave reflection, resulting in a net warming effect (~5.1 ± 3.8 W m−2) globally on the earth–atmosphere system. The net warming is over 15 W m−2 in the tropical deep convective regions, whereas cooling occurs in the midlatitudes, which is less than 10 W m−2 in magnitude. Seasonal variations of ice cloud radiative effects are evident in the midlatitudes where the net effect changes from warming during winter to cooling during summer, whereas warming occurs all year-round in the tropics. Ice cloud optical depth τ is shown to be an important factor in determining the sign and magnitude of the net radiative effect. Ice clouds with τ < 4.6 display a warming effect with the largest contributions from those with τ ≈ 1.0. In addition, ice clouds cause vertically differential heating and cooling of the atmosphere, particularly with strong heating in the upper troposphere over the tropics. At Earth’s surface, ice clouds produce a cooling effect no matter how small the τ value is.

Corresponding author address: Yulan Hong, Department of Earth, Ocean and Atmospheric Science, Florida State University, 1017 Academic Way, 319 Love Bldg., Tallahassee, FL 32306-4520. E-mail: yh12c@my.fsu.edu

Abstract

Although it is well established that cirrus warms Earth, the radiative effect of the entire spectrum of ice clouds is not well understood. In this study, the role of all ice clouds in Earth’s radiation budget is investigated by performing radiative transfer modeling using ice cloud properties retrieved from CloudSat and CALIPSO measurements as inputs. Results show that, for the 2008 period, the warming effect (~21.8 ± 5.4 W m−2) induced by ice clouds trapping longwave radiation exceeds their cooling effect (~−16.7 ± 1.7 W m−2) caused by shortwave reflection, resulting in a net warming effect (~5.1 ± 3.8 W m−2) globally on the earth–atmosphere system. The net warming is over 15 W m−2 in the tropical deep convective regions, whereas cooling occurs in the midlatitudes, which is less than 10 W m−2 in magnitude. Seasonal variations of ice cloud radiative effects are evident in the midlatitudes where the net effect changes from warming during winter to cooling during summer, whereas warming occurs all year-round in the tropics. Ice cloud optical depth τ is shown to be an important factor in determining the sign and magnitude of the net radiative effect. Ice clouds with τ < 4.6 display a warming effect with the largest contributions from those with τ ≈ 1.0. In addition, ice clouds cause vertically differential heating and cooling of the atmosphere, particularly with strong heating in the upper troposphere over the tropics. At Earth’s surface, ice clouds produce a cooling effect no matter how small the τ value is.

Corresponding author address: Yulan Hong, Department of Earth, Ocean and Atmospheric Science, Florida State University, 1017 Academic Way, 319 Love Bldg., Tallahassee, FL 32306-4520. E-mail: yh12c@my.fsu.edu
Save