• Betts, A. K., 1998: Climate-convection feedbacks: Some further issues. Climatic Change, 39, 3538, doi:10.1023/A:1005323805826.

  • Boos, W. R., 2012: Thermodynamic scaling of the hydrological cycle of the Last Glacial Maximum. J. Climate, 25, 9921006, doi:10.1175/JCLI-D-11-00010.1.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2010: Characteristics of summer stationary waves in the Northern Hemisphere. J. Climate, 23, 44894507, doi:10.1175/2010JCLI3149.1.

    • Search Google Scholar
    • Export Citation
  • Cherchi, A., A. Alessandri, S. Masina, and A. Navarra, 2011: Effects of increased CO2 levels on monsoons. Climate Dyn., 37, 83101, doi:10.1007/s00382-010-0801-7.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, doi:10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and C. A. Chen, 2010: Depth of convection and the weakening of tropical circulation in global warming. J. Climate, 23, 30193030, doi:10.1175/2010JCLI3383.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Douville, H., F. Chauvin, S. Planton, J. F. Royer, D. Salas-Melia, and S. Tyteca, 2002: Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols. Climate Dyn., 20, 4568, doi:10.1007/s00382-002-0259-3.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, doi:10.1126/science.1212222.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2007: Quasi-equilibrium dynamics of the tropical atmosphere. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 186–218.

  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, doi:10.1175/JAS3935.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, doi:10.1175/JAS3753.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., 2012: Moist Hadley circulation: Possible role of wave–convection coupling in aquaplanet experiments. J. Atmos. Sci., 69, 891907, doi:10.1175/JAS-D-11-0149.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joseph, R., M. Ting, and P. J. Kushner, 2004: The global stationary wave response to climate change in a coupled GCM. J. Climate, 17, 540556, doi:10.1175/1520-0442(2004)017<0540:TGSWRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and E. K. Schneider, 2000: A spontaneously generated tropical atmospheric general circulation. J. Atmos. Sci., 57, 20802093, doi:10.1175/1520-0469(2000)057<2080:ASGTAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, doi:10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levine, X. J., and T. Schneider, 2011: Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J. Atmos. Sci., 68, 769783, doi:10.1175/2010JAS3553.1.

    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, M. Ting, and Y. Liu, 2012: Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat. Geosci., 5, 830834, doi:10.1038/ngeo1590.

    • Search Google Scholar
    • Export Citation
  • Ma, J., S. P. Xie, and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 29792994, doi:10.1175/JCLI-D-11-00048.1.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and T. Schneider, 2011: Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates. J. Climate, 24, 47574768, doi:10.1175/2011JCLI4042.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293322, doi:10.1002/qj.49711347517.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections, and global warming. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 267–301.

  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—formulation. J. Atmos. Sci., 57, 17411766, doi:10.1175/1520-0469(2000)057<1741:AQETCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, doi:10.1175/2007JCLI2065.1.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., R. P. Allan, M. P. Byrne, and M. Previdi, 2012: Energetic constraints on precipitation under climate change. Surv. Geophys., 33, 585608, doi:10.1007/s10712-011-9159-6.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Observed mean state of the atmosphere. Physics of Climate, J. P. Peixoto and A. H. Oort, Eds., Springer-Verlag, 131–175.

  • Pierrehumbert, R. T., H. Brogniez, and R. Roca, 2007: On the relative humidity of the atmosphere. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 143–185.

  • Plumb, R. A., and A. Y. Hou, 1992: The response of a zonally symmetric atmosphere to subtropical thermal forcing: Threshold behavior. J. Atmos. Sci., 49, 17901799, doi:10.1175/1520-0469(1992)049<1790:TROAZS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, doi:10.1002/qj.49712253408.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, doi:10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2012: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, doi:10.1029/2012GL052910.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. A. O’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, doi:10.1175/2010JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2014: On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci., 71, 17241746, doi:10.1175/JAS-D-13-0137.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and O. Pauluis, 2012: Tropical and subtropical meridional latent heat transports by disturbances to the zonal mean and their role in the general circulation. J. Atmos. Sci., 69, 18721889, doi:10.1175/JAS-D-11-0236.1.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2012: Upward shift of the atmospheric general circulation under global warming: Theory and simulations. J. Climate, 25, 82598276, doi:10.1175/JCLI-D-11-00699.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H. L., N. Ishizaki, and A. Kitoh, 2004: Trend and interannual variability of walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus, 56A, 250269, doi:10.1111/j.1600-0870.2004.00049.x.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2004: The flow of energy through the earth’s climate system. Quart. J. Roy. Meteor. Soc., 130, 26772701, doi:10.1256/qj.04.83.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13, 39693993, doi:10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, doi:10.1007/BF00122760.

    • Search Google Scholar
    • Export Citation
  • Ueda, H., A. Iwai, K. Kuwako, and M. E. Hori, 2006: Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs. Geophys. Res. Lett., 33, L06703, doi:10.1029/2005GL025336.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Ding, 2006: Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett., 33, L06711, doi:10.1029/2005GL025347.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of the tropical atmosphere to local, steady forcing. Mon. Wea. Rev., 100, 518541, doi:10.1175/1520-0493(1972)100<0518:ROTTAT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235, doi:10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Wills, R. C., and T. Schneider, 2015: Stationary eddies and the zonal asymmetry of net precipitation and ocean freshwater forcing. J. Climate, 28, 51155133, doi:10.1175/JCLI-D-14-00573.1.

    • Search Google Scholar
    • Export Citation
  • Zhai, J., and W. Boos, 2015: Regime transitions of cross-equatorial Hadley circulations with zonally asymmetric thermal forcings. J. Atmos. Sci., 72, 38003818, doi:10.1175/JAS-D-15-0025.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., L. Zhang, and H. Li, 2008: Changes in global land monsoon area and total rainfall accumulation over the last half century. Geophys. Res. Lett., 35, L16707, doi:10.1029/2008GL034881.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y. P., K. M. Xu, Y. C. Sud, and A. K. Betts, 2011: Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J. Geophys. Res., 116, D09101, doi:10.1029/2010JD015197.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 4 4 4

A Mechanism for the Response of the Zonally Asymmetric Subtropical Hydrologic Cycle to Global Warming

View More View Less
  • 1 Department of Geology and Geophysics, Yale University, New Haven, Connecticut
Restricted access

Abstract

Time-mean, zonally asymmetric circulations (hereafter referred to as stationary circulations) maintain intense hydrologic contrasts in Earth’s subtropics in the present climate, especially between monsoon regions and deserts during local summer. Such zonal contrasts in hydrology generally increase in comprehensive GCM simulations of a warming climate, yet a full understanding of stationary circulations and their contribution to the hydrologic cycle in present and future climates is lacking. This study uses an idealized moist GCM to investigate the response of subtropical stationary circulations to global warming. Stationary circulations are forced by a prescribed subtropical surface heat source, and atmospheric infrared opacity is varied to produce a wide range of climates with global-mean surface temperatures between 267 and 319 K. The strength of stationary circulations varies nonmonotonically with global mean temperature in these simulations. Zonal asymmetries in precipitation increase with temperature in climates colder than or comparable to that of Earth but remain steady or weaken in warmer climates. A novel mechanism is proposed in which this behavior is caused by the changes in tropopause height and zonal SST gradients expected to occur with global warming. Casting this mechanism in terms of the first-baroclinic mode of the tropical troposphere produces a theory that quantitatively captures the nonmonotonic dependence of stationary circulation strength on global mean temperature. Zonally asymmetric changes in precipitation minus surface evaporation (PE) are predicted by combining this dynamical theory with the tropospheric moisture changes expected if relative humidity remains constant.

Corresponding author address: Xavier J. Levine, Yale University, 210 Whitney Ave., New Haven, CT 06511. E-mail: xavier.levine@yale.edu

Abstract

Time-mean, zonally asymmetric circulations (hereafter referred to as stationary circulations) maintain intense hydrologic contrasts in Earth’s subtropics in the present climate, especially between monsoon regions and deserts during local summer. Such zonal contrasts in hydrology generally increase in comprehensive GCM simulations of a warming climate, yet a full understanding of stationary circulations and their contribution to the hydrologic cycle in present and future climates is lacking. This study uses an idealized moist GCM to investigate the response of subtropical stationary circulations to global warming. Stationary circulations are forced by a prescribed subtropical surface heat source, and atmospheric infrared opacity is varied to produce a wide range of climates with global-mean surface temperatures between 267 and 319 K. The strength of stationary circulations varies nonmonotonically with global mean temperature in these simulations. Zonal asymmetries in precipitation increase with temperature in climates colder than or comparable to that of Earth but remain steady or weaken in warmer climates. A novel mechanism is proposed in which this behavior is caused by the changes in tropopause height and zonal SST gradients expected to occur with global warming. Casting this mechanism in terms of the first-baroclinic mode of the tropical troposphere produces a theory that quantitatively captures the nonmonotonic dependence of stationary circulation strength on global mean temperature. Zonally asymmetric changes in precipitation minus surface evaporation (PE) are predicted by combining this dynamical theory with the tropospheric moisture changes expected if relative humidity remains constant.

Corresponding author address: Xavier J. Levine, Yale University, 210 Whitney Ave., New Haven, CT 06511. E-mail: xavier.levine@yale.edu
Save