• Ablain, M., and Coauthors, 2015: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative Project. Ocean Sci., 11, 6782, doi:10.5194/os-11-67-2015.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., S. Levitus, and T. P. Boyer, 2002: Steric sea level variations during 1957–1994: Importance of salinity. J. Geophys. Res., 107, 8013, doi:10.1029/2001JC000964.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Becker, M., B. Meyssignac, C. Letetrel, W. Llovel, A. Cazenave, and T. Delcroix, 2012: Sea level variations at tropical Pacific islands since 1950. Global Planet. Change, 80–81, 8598, doi:10.1016/j.gloplacha.2011.09.004.

    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., and C. W. Hughes, 2012: Local diagnostics to estimate density‐induced sea level variations over topography and along coastlines. J. Geophys. Res., 117, C01013, doi:10.1029/2011JC007276.

    • Search Google Scholar
    • Export Citation
  • Cabanes, C., T. Huck, and A. Colin de Verdière, 2006: Contributions of wind forcing and surface heating to interannual sea level variations in the Atlantic Ocean. J. Phys. Oceanogr., 36, 17391750, doi:10.1175/JPO2935.1.

    • Search Google Scholar
    • Export Citation
  • Cazenave, A., and W. Llovel, 2010: Contemporary sea level rise. Annu. Rev. Mar. Sci., 2, 145173, doi:10.1146/annurev-marine-120308-081105.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and R. E. Davis, 1982: Monthly mean sea-level variability along the west coast of North America. J. Phys. Oceanogr., 12, 757784, doi:10.1175/1520-0485(1982)012<0757:MMSLVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous meridional modes of atmosphere–ocean variability in the tropical Pacific and tropical Atlantic. J. Climate, 17, 41434158, doi:10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Chowdhury, M. R., P.-S. Chu, T. Schroeder, and N. Colasacco, 2007: Seasonal sea‐level forecasts by canonical correlation analysis—An operational scheme for the US‐affiliated Pacific Islands. Int. J. Climatol., 27, 13891402, doi:10.1002/joc.1474.

    • Search Google Scholar
    • Export Citation
  • Chowdhury, M. R., P.-S. Chu, and C. C. Guard, 2014: An improved sea level forecasting scheme for hazards management in the US‐affiliated Pacific Islands. Int. J. Climatol., 34, 23202329, doi:10.1002/joc.3841.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and N. J. White, 2011: Sea-level rise from the late 19th to the early 21st century. Surv. Geophys., 32, 585602, doi:10.1007/s10712-011-9119-1.

    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., and G. S. E. Lagerloef, 2004: Wind-driven interannual variability over the northeast Pacific Ocean. Deep-Sea Res. I, 51, 21052121, doi:10.1016/j.dsr.2004.08.004.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553507, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dunstone, N., D. Smith, A. Scaife, L. Hermanson, R. Ease, N. Robinson, M. Andrews, and J. Knight, 2016: Skillful predictions of the winter North Atlantic oscillation one year ahead. Nature Geosci., in press.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and J. S. Allen, 1980: On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America. J. Phys. Oceanogr., 10, 557578, doi:10.1175/1520-0485(1980)010<0557:OTSADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Esselborn, S., and C. Eden, 2001: Sea surface height changes in the North Atlantic Ocean related to the North Atlantic Oscillation. Geophys. Res. Lett., 28, 34733476, doi:10.1029/2001GL012863.

    • Search Google Scholar
    • Export Citation
  • Fagherazzi, S., G. Fosser, L. D’Alpaos, and P. D’Odorico, 2005: Climatic oscillations influence the flooding of Venice. Geophys. Res. Lett., 32, L19710, doi:10.1029/2005GL023758.

    • Search Google Scholar
    • Export Citation
  • Ferry, N., G. Reverdin, and A. Oschlies, 2000: Seasonal sea surface height variability in the North Atlantic Ocean. J. Geophys. Res., 105, 63076326, doi:10.1029/1999JC900296.

    • Search Google Scholar
    • Export Citation
  • Forget, G., and R. M. Ponte, 2015: The partition of regional sea level variability. Prog. Oceanogr., 137, 173195, doi:10.1016/j.pocean.2015.06.002.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Müller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27, 15331546, doi:10.1175/1520-0485(1997)027<1533:ASMOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., R. Raghunath, and L.-L. Fu, 1998: Nature of global large‐scale sea level variability in relation to atmospheric forcing: A modeling study. J. Geophys. Res., 103, 54935512, doi:10.1029/97JC02907.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., and P. P. Niller, 1973: The theory of the seasonal variability in the ocean. Deep-Sea Res. Oceanogr. Abstr., 20, 141177, doi:10.1016/0011-7471(73)90049-1.

    • Search Google Scholar
    • Export Citation
  • Goddard, P. B., J. Yin, S. M. Griffies, and S. Zhang, 2015: An extreme event of sea-level rise along the Northeast coast of North America in 2009–2010. Nat. Commun., 6, 6346, doi:10.1038/ncomms7346.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., 2001: Variability in sea surface height: A qualitative measure for the meridional overturning in the North Atlantic. J. Geophys. Res., 106, 13 83713 848, doi:10.1029/1999JC000155.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., and P. B. Rhines, 2004: Decline of subpolar North Atlantic circulation during the 1990s. Science, 304, 555559, doi:10.1126/science.1094917.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual, version 4.1. Doc. LA-CC-06-012, 76 pp. [Available online at http://csdms.colorado.edu/w/images/CICE_documentation_and_software_user's_manual.pdf.]

  • Jacobs, G. A., H. E. Hurlburt, J. C. Kindle, E. J. Metzger, J. L. Mitchell, W. J. Teague, and A. J. Wallcraft, 1994: Decade-scale trans-Pacific propagation and warming effects of an El-Nino anomaly. Nature, 370, 360363, doi:10.1038/370360a0.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., M. J. Caruso, and J. A. Austin, 1993: Wind-forced variations in sea surface height in the northeast Pacific Ocean. J. Phys. Oceanogr., 23, 23922411, doi:10.1175/1520-0485(1993)023<2392:WFVISS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, J. F., and Coauthors, 2014: Predictions of climate several years ahead using an improved decadal prediction system. J. Climate, 27, 75507567, doi:10.1175/JCLI-D-14-00069.1.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2014: Detecting processes contributing to interannual halosteric and thermosteric sea level variability. J. Climate, 27, 24172426, doi:10.1175/JCLI-D-13-00412.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp., doi:10.5065/D6KK98Q6.

  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Lutz, K., J. Rathmann, and J. Jacobeit, 2013: Classification of warm and cold water events in the eastern tropical Atlantic Ocean. Atmos. Sci. Lett., 14, 102106, doi:10.1002/asl2.424.

    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084, doi:10.1002/qj.2396.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine, version 3.0. IPSL Pole Modelization Note 27, 209 pp. [Available online at http://www.nemo-ocean.eu/content/download/5302/31828/file/NEMO_book.pdf.]

  • McGregor, S., N. J. Holbrook, and S. B. Power, 2007: Interdecadal sea surface temperature variability in the equatorial Pacific Ocean. Part I: The role of off-equatorial wind stresses and oceanic Rossby waves. J. Climate, 20, 26432658, doi:10.1175/JCLI4145.1.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., J. A. Church, E. R. Miles, K. Ridgway, and C. M. Spillman, 2015: Seasonal coastal sea level prediction using a dynamical model. Geophys. Res. Lett., 42, 67476753, doi:10.1002/2015GL065091.

    • Search Google Scholar
    • Export Citation
  • Megann, A., and Coauthors, 2014: GO5.0: The joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 10691092, doi:10.5194/gmd-7-1069-2014.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Menéndez, M., and P. L. Woodworth, 2010: Changes in extreme high water levels based on a quasi‐global tide‐gauge data set. J. Geophys. Res., 115, C10011, doi:10.1029/2009JC005997.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., and M. E. Maltrud, 2011: Regional sea level trends due to a Pacific trade wind intensification. Geophys. Res. Lett., 38, L21605, doi:10.1029/2011GL049576.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., P. R. Thompson, and M. Lander, 2012: Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett., 39, L13602, doi:10.1029/2012GL052032.

    • Search Google Scholar
    • Export Citation
  • Miles, E. R., C. M. Spillman, J. A. Church, and P. C. McIntosh, 2014: Seasonal prediction of global sea level anomalies using an ocean–atmosphere dynamical model. Climate Dyn., 43, 21312145, doi:10.1007/s00382-013-2039-7.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610, doi:10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholls, R. J., and A. Cazenave, 2010: Sea-level rise and its impact on coastal zones. Science, 328, 15171520, doi:10.1126/science.1185782.

    • Search Google Scholar
    • Export Citation
  • Nicholls, R. J., F. M. J. Hoozemans, and M. Marchand, 1999: Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Global Environ. Change, 9, S69S87, doi:10.1016/S0959-3780(99)00019-9.

    • Search Google Scholar
    • Export Citation
  • Penduff, T., M. Juza, L. Brodeau, G. C. Smith, B. Barnier, J.-M. Molines, A.-M. Treguier, and G. Madec, 2010: Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci., 6, 269284, doi:10.5194/os-6-269-2010.

    • Search Google Scholar
    • Export Citation
  • Penduff, T., M. Juza, B. Barnier, J. Zika, W. K. Dewar, A.-M. Treguier, J.-M. Molines, and N. Audiffren, 2011: Sea level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Climate, 24, 56525670, doi:10.1175/JCLI-D-11-00077.1.

    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., and R. M. Ponte, 2011: Mechanisms of interannual steric sea level variability. Geophys. Res. Lett., 38, L15605, doi:10.1029/2011GL048440.

    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., K. J. Quinn, and R. M. Ponte, 2013: Satellite‐derived interannual ocean bottom pressure variability and its relation to sea level. Geophys. Res. Lett., 40, 31063110, doi:10.1002/grl.50549.

    • Search Google Scholar
    • Export Citation
  • Polkova, I., A. Köhl, and D. Stammer, 2014: Impact of initialization procedures on the predictive skill of a coupled ocean–atmosphere model. Climate Dyn., 42, 31513169, doi:10.1007/s00382-013-1969-4.

    • Search Google Scholar
    • Export Citation
  • Polkova, I., A. Köhl, and D. Stammer, 2015: Predictive skill for regional interannual steric sea level and mechanisms for predictability. J. Climate, 28, 74077419, doi:10.1175/JCLI-D-14-00811.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2002: Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 32, 353375, doi:10.1175/1520-0485(2002)032<0353:LSVITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2006: Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 36, 17511762, doi:10.1175/JPO2943.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J. Phys. Oceanogr., 40, 25252538, doi:10.1175/2010JPO4462.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., and Coauthors, 2013: Atmosphere drives recent interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett., 40, 51645170, doi:10.1002/grl.50930.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 (6751), 360363.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and J. M. Murphy, 2007: An objective ocean temperature and salinity analysis using covariances from a global climate model. J. Geophys. Res., 112, C02022, doi:10.1029/2006JD007574.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, and H. Pohlmann, 2013: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 33253338, doi:10.1007/s00382-013-1683-2.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2015: Earth’s energy imbalance since 1960 in observations and CMIP5 models. Geophys. Res. Lett., 42, 12051213, doi:10.1002/2014GL062669.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Steric and wind‐induced changes in TOPEX/POSEIDON large‐scale sea surface topography observations. J. Geophys. Res., 102, 20 98721 009, doi:10.1029/97JC01475.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., A. Cazenave, R. M. Ponte, and M. E. Tamisiea, 2013: Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci., 5, 2146, doi:10.1146/annurev-marine-121211-172406.

    • Search Google Scholar
    • Export Citation
  • Sturges, W., and B. G. Hong, 1995: Wind forcing of the Atlantic thermocline along 32°N at low frequencies. J. Phys. Oceanogr., 25, 17061715, doi:10.1175/1520-0485(1995)025<1706:WFOTAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sturges, W., B. G. Hong, and A. J. Clarke, 1998: Decadal wind forcing of the North Atlantic subtropical gyre. J. Phys. Oceanogr., 28, 659668, doi:10.1175/1520-0485(1998)028<0659:DWFOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S. McGregor, and F.-F. Jin, 2010: Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J. Climate, 23, 44294437, doi:10.1175/2010JCLI3519.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Tsimplis, M. N., A. G. Shaw, R. A. Flather, and D. K. Woolf, 2006: The influence of the North Atlantic Oscillation on the sea-level around the northern European coasts reconsidered: The thermosteric effects. Philos. Trans. Roy. Soc. London, A364, 845856, doi:10.1098/rsta.2006.1740.

    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., R. M. Ponte, and D. Stammer, 2007: Relation between sea level and bottom pressure and the vertical dependence of oceanic variability. Geophys. Res. Lett., 34, L03608, doi:10.1029/2006GL028588.

    • Search Google Scholar
    • Export Citation
  • Vivier, F., K. A. Kelly, and L. Thompson, 1999: Contributions of wind forcing, waves, and surface heating to sea surface height observations in the Pacific Ocean. J. Geophys. Res., 104, 20 76720 788, doi:10.1029/1999JC900096.

    • Search Google Scholar
    • Export Citation
  • Williams, K., and Coauthors, 2015: The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 15091524, doi:10.5194/gmd-8-1509-2015.

    • Search Google Scholar
    • Export Citation
  • Wong, P. P., I. J. Losada, J.-P. Gattuso, J. Hinkel, A. Khattabi, K. L. McInnes, Y. Saito, and A. Sallenger, 2014: Coastal systems and low-lying areas. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. C. B. Field et al., Eds., Cambridge University Press, 361–410.

  • Woodworth, P. L., R. A. Flather, J. A. Williams, S. L. Wakelin, and S. Jevrejeva, 2007: The dependence of UK extreme sea levels and storm surges on the North Atlantic Oscillation. Cont. Shelf Res., 27, 935946, doi:10.1016/j.csr.2006.12.007.

    • Search Google Scholar
    • Export Citation
  • Woolf, D. K., A. G. P. Shaw, and M. N. Tsimplis, 2003: The influence of the North Atlantic Oscillation on sea-level variability in the North Atlantic region. J. Atmos. Ocean Sci., 9, 145167, doi:10.1080/10236730310001633803.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific oceanto atmospheric forcing. J. Phys. Oceanogr., 5, 572584, doi:10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., and A. Leetmaa, 2000: Forecasts of tropical Pacific SST and sea level using a Markov model. Geophys. Res. Lett., 27, 27012704, doi:10.1029/1999GL011107.

    • Search Google Scholar
    • Export Citation
  • Yan, Z., M. N. Tsimplis, and D. Woolf, 2004: Analysis of the relationship between the North Atlantic oscillation and sea‐level changes in northwest Europe. Int. J. Climatol., 24, 743758, doi:10.1002/joc.1035.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and J. A. Church, 2012: Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett., 39, L21701, doi:10.1029/2012GL053240.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 14
PDF Downloads 10 10 10

On the Drivers and Predictability of Seasonal-to-Interannual Variations in Regional Sea Level

View More View Less
  • 1 Met Office Hadley Centre, Exeter, United Kingdom
Restricted access

Abstract

Observations and eddy-permitting ocean model simulations are used to evaluate the drivers of sea level variability associated with 15 modes of climate variability covering the Atlantic, Pacific, Indian, and Southern Oceans. Sea level signals are decomposed into barotropic, steric, and inverted barometer contributions. Forcings are decomposed into surface winds, buoyancy fluxes, and Ekman pumping. Seasonal-to-interannual sea level variability in the low latitudes is governed almost entirely by the thermosteric response to wind forcing associated with tropical modes of climate variability. In the extratropics, changes to dynamic sea level associated with atmospheric modes of variability include a substantial barotropic response to wind forcing, particularly over the continental shelf seas. However, wind-driven steric changes are also important in some locations. On interannual time scales, wind-forced steric changes dominate, although heat and freshwater fluxes are important in the northwest Atlantic, where low-frequency sea level variations are associated with changes in the Atlantic meridional overturning circulation. Using the version 3 of the Met Office Decadal Prediction System (DePreSys3), the predictability of large-scale dynamic sea level anomalies on seasonal-to-interannual time scales is evaluated. For the first year of the hindcast simulations, DePreSys3 exhibits skill exceeding persistence over large regions of the Pacific, Atlantic, and Indian Oceans. Skill is particularly high in the tropical Indo-Pacific because of the accurate initialization and propagation of thermocline depth anomalies associated with baroclinic adjustments to remote wind forcing. Skill in the extratropics is hindered by the limited predictability of wind anomalies associated with modes of atmospheric variability that dominate local and/or barotropic responses.

Corresponding author address: C. D. Roberts, Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3P, United Kingdom. E-mail: chris.roberts@metoffice.gov.uk

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0886.s1.

Abstract

Observations and eddy-permitting ocean model simulations are used to evaluate the drivers of sea level variability associated with 15 modes of climate variability covering the Atlantic, Pacific, Indian, and Southern Oceans. Sea level signals are decomposed into barotropic, steric, and inverted barometer contributions. Forcings are decomposed into surface winds, buoyancy fluxes, and Ekman pumping. Seasonal-to-interannual sea level variability in the low latitudes is governed almost entirely by the thermosteric response to wind forcing associated with tropical modes of climate variability. In the extratropics, changes to dynamic sea level associated with atmospheric modes of variability include a substantial barotropic response to wind forcing, particularly over the continental shelf seas. However, wind-driven steric changes are also important in some locations. On interannual time scales, wind-forced steric changes dominate, although heat and freshwater fluxes are important in the northwest Atlantic, where low-frequency sea level variations are associated with changes in the Atlantic meridional overturning circulation. Using the version 3 of the Met Office Decadal Prediction System (DePreSys3), the predictability of large-scale dynamic sea level anomalies on seasonal-to-interannual time scales is evaluated. For the first year of the hindcast simulations, DePreSys3 exhibits skill exceeding persistence over large regions of the Pacific, Atlantic, and Indian Oceans. Skill is particularly high in the tropical Indo-Pacific because of the accurate initialization and propagation of thermocline depth anomalies associated with baroclinic adjustments to remote wind forcing. Skill in the extratropics is hindered by the limited predictability of wind anomalies associated with modes of atmospheric variability that dominate local and/or barotropic responses.

Corresponding author address: C. D. Roberts, Met Office Hadley Centre, Fitzroy Road, Exeter EX1 3P, United Kingdom. E-mail: chris.roberts@metoffice.gov.uk

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0886.s1.

Supplementary Materials

    • Supplemental Materials (PDF 3.04 MB)
Save