• AIR, 2015: The AIR hurricane model: AIR Atlantic tropical cyclone model V15.0.1 as implemented in touchstone V3.0.0. AIR Worldwide Corporation Tech. Rep., 510 pp.

  • Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, doi:10.1175/JAS-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3. [Available online at https://ams.confex.com/ams/pdfpapers/70720.pdf.]

  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity: 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. A. Wing, 2016: Tropical cyclones in climate models. Wiley Interdiscip. Rev.: Climate Change, 7, 211237, doi:10.1002/wcc.373.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443, doi:10.1111/j.1600-0870.2007.00238.x.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. K. Tippett, A. H. Sobel, G. A. Vecchi, and M. Zhao, 2014: Testing the performance of tropical cyclone genesis indices in future climates using the HiRAM model. J. Climate, 27, 91719196, doi:10.1175/JCLI-D-13-00505.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, doi:10.1175/JCLI-D-12-00061.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, doi:10.1175/MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945-2000. Naval Research Laboratory Tech. Rep. NRL/MR/7540-02-16, 22 pp.

  • Davis, K., X. Zeng, and E. A. Ritchie, 2015: A new statistical model for predicting seasonal North Atlantic hurricane activity. Wea. Forecasting, 30, 730741, doi:10.1175/WAF-D-14-00156.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, doi:10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2013: ERA Interim, monthly means of daily means. ECMWF, accessed 2013. [Available online at http://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=pl/.]

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 11391152, doi:10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 47974802, doi:10.1175/JCLI3908.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2008: The hurricane–climate connection. Bull. Amer. Meteor. Soc., 89, ES10ES20, doi:10.1175/BAMS-89-5-Emanuel.

  • Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, doi:10.1073/pnas.1301293110.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, doi:10.1175/BAMS-87-3-299.

    • Search Google Scholar
    • Export Citation
  • Feuerstein, B., N. Dotzek, and J. Grieser, 2005: Assessing a tornado climatology from global tornado intensity distributions. J. Climate, 18, 585596, doi:10.1175/JCLI-3285.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, doi:10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hall, T., and S. Jewson, 2007: Statistical modelling of North Atlantic tropical cyclone tracks. Tellus, 59A, 486498, doi:10.1111/j.1600-0870.2007.00240.x.

    • Search Google Scholar
    • Export Citation
  • Hall, T., and E. Yonekura, 2013: North American tropical cyclone landfall and SST: A statistical model study. J. Climate, 26, 84228439, doi:10.1175/JCLI-D-12-00756.1.

    • Search Google Scholar
    • Export Citation
  • Hristopulos, D. T., and V. Mouslopoulou, 2013: Strength statistics and the distribution of earthquake interevent times. Physica A, 392, 485496, doi:10.1016/j.physa.2012.09.011.

    • Search Google Scholar
    • Export Citation
  • Huang, P., I. I. Lin, C. Chou, and R.-H. Huang, 2015: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat. Commun., 6, 7188, doi:10.1038/ncomms8188.

    • Search Google Scholar
    • Export Citation
  • IRI Data Library, 2013: NOAA NCEP EMC CMB GODAS Monthly Global Ocean Data Assimilation System. International Research Institute for Climate and Society, accessed 2013. [Available online at http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GODAS/.]

  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, doi:10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • JTWC, 2014: Tropical cyclone best track data site. Joint Typhoon Warning Center, accessed 2014. [Available online at http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/.]

  • Kaplan, J., and M. DeMaria, 1995: A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteor., 34, 24992512, doi:10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2009: Twenty-five years of Atlantic basin seasonal hurricane forecasts (1984–2008). Geophys. Res. Lett., 36, L09711, doi:10.1029/2009GL037580.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and E. C. J. Oliver, 2015: Modulation of Atlantic basin tropical cyclone activity by the Madden–Julian oscillation (MJO) from 1905 to 2011. J. Climate, 28, 204217, doi:10.1175/JCLI-D-14-00509.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and C. R. Sampson, 2009: Southern Hemisphere tropical cyclone intensity forecast methods used at the Joint Typhoon Warning Center. Part II: Statistical dynamical forecasts. Aust. Meteor. Oceanogr. J., 58, 918.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688699, doi:10.1175/WAF863.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming condition. Nat. Geosci., 1, 359364, doi:10.1038/ngeo202.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Climate, 26, 99609976, doi:10.1175/JCLI-D-13-00262.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349352, doi:10.1038/nature13278.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., and S. S. Chen, 2014: Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Mon. Wea. Rev., 142, 19271944, doi:10.1175/MWR-D-13-00122.1.

    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., M. K. Tippett, S. J. Camargo, and A. H. Sobel, 2015: Probabilistic multiple-linear regression modeling for tropical cyclone intensity. Mon. Wea. Rev., 143, 933954, doi:10.1175/MWR-D-14-00171.1.

    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2016: Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat. Commun., 7, 10625, doi:10.1038/ncomms10625.

    • Search Google Scholar
    • Export Citation
  • Lin, I. I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 32883306, doi:10.1175/2008MWR2277.1.

    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 38673893, doi:10.1175/JCLI-D-11-00346.1.

    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and Coauthors, 2014: Future changes in the western North Pacific tropical cyclone activity projected by a multidecadal simulation with a 16-km global atmospheric GCM. J. Climate, 27, 76227646, doi:10.1175/JCLI-D-13-00678.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, doi:10.1175/JCLI-D-11-00415.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2015: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079, doi:10.1175/JCLI-D-15-0216.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, J., U. Lall, Y. Kushnir, and B. Rajagopalan, 2015: HITS: Hurricane intensity and track simulator with North Atlantic Ocean applications for risk assessment. J. Appl. Meteor. Climatol., 54, 16201636, doi:10.1175/JAMC-D-14-0141.1.

    • Search Google Scholar
    • Export Citation
  • NHC, 2013: Best track data (HURDAT2). National Hurricane Center, accessed 2013. [Available online at http://www.nhc.noaa.gov/data/#hurdat.]

  • Oouchi, K., J. Yosimura, R. Mizuta, S. Kusonoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276, doi:10.2151/jmsj.84.259.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 2009: Metrics of hurricane-ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Sci., 5, 351368, doi:10.5194/os-5-351-2009.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, doi:10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, doi:10.1175/2010JCLI3811.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., S. Woolnough, M. A. Balmaseda, and A. M. Tompkins, 2007: Monthly forecast of the Madden–Julian oscillation using a coupled GCM. Mon. Wea. Rev., 135, 27002715, doi:10.1175/MWR3415.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J.-K. E. Schemm, A. Kumar, W. Wang, L. Long, M. Chelliah, G. D. Bell, and P. Peng, 2009: A statistical forecast model for Atlantic seasonal hurricane activity based on the NCEP dynamical seasonal forecast. J. Climate, 22, 44814500, doi:10.1175/2009JCLI2753.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., C.-Y. Lee, and I. I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 35623578, doi:10.1175/JAS4051.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2014: Simulations of the present and late-twenty-first-century western North Pacific tropical cyclone activity using a regional model. J. Climate, 27, 34053424, doi:10.1175/JCLI-D-12-00830.1.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., M. Sugi, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405428, doi:10.2151/jmsj.84.405.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, and G. A. Vecchi, 2010: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 38583868, doi:10.1175/2010MWR3366.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 9 9 9

Autoregressive Modeling for Tropical Cyclone Intensity Climatology

View More View Less
  • 1 International Research Institute for Climate and Society, Columbia University, Palisades, New York
  • | 2 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia
  • | 3 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
  • | 4 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
Restricted access

Abstract

An autoregressive model is developed to simulate the climatological distribution of global tropical cyclone (TC) intensity. The model consists of two components: a regression-based deterministic component that advances the TC intensity in time and depends on the storm state and surrounding large-scale environment and a stochastic forcing. Potential intensity, deep-layer mean vertical shear, and midlevel relative humidity are the environmental variables included in the deterministic component. Given a storm track and its environment, the model is initialized and then iterated along the track. Model performance is evaluated by its ability to represent the observed global and basin distributions of TC intensity as well as lifetime maximum intensity (LMI). The deterministic model alone captures the spatial features of the climatological TC intensity distribution but with intensities that remain below 100 kt (1 kt ≈ 0.51 m s−1). Addition of white (uncorrelated in time) stochastic forcing reduces this bias by improving the simulated intensification rates and the frequency of major storms. The model simulates a realistic range of intensities, but the frequency of major storms remains too low in some basins.

Corresponding author address: Chia-Ying Lee, International Research Institute for Climate and Society, Columbia University, 202 Monell, 61 Route 9W, Palisades, NY 10964. E-mail: clee@iri.columbia.edu

Abstract

An autoregressive model is developed to simulate the climatological distribution of global tropical cyclone (TC) intensity. The model consists of two components: a regression-based deterministic component that advances the TC intensity in time and depends on the storm state and surrounding large-scale environment and a stochastic forcing. Potential intensity, deep-layer mean vertical shear, and midlevel relative humidity are the environmental variables included in the deterministic component. Given a storm track and its environment, the model is initialized and then iterated along the track. Model performance is evaluated by its ability to represent the observed global and basin distributions of TC intensity as well as lifetime maximum intensity (LMI). The deterministic model alone captures the spatial features of the climatological TC intensity distribution but with intensities that remain below 100 kt (1 kt ≈ 0.51 m s−1). Addition of white (uncorrelated in time) stochastic forcing reduces this bias by improving the simulated intensification rates and the frequency of major storms. The model simulates a realistic range of intensities, but the frequency of major storms remains too low in some basins.

Corresponding author address: Chia-Ying Lee, International Research Institute for Climate and Society, Columbia University, 202 Monell, 61 Route 9W, Palisades, NY 10964. E-mail: clee@iri.columbia.edu
Save