• Abhilash, S., A. K. Sahai, S. Pattnaik, B. N. Goswami, and A. Kumar, 2014: Extended range prediction of active-break spells of Indian summer monsoon rainfall using an ensemble prediction system in NCEP Climate Forecast System. Int. J. Climatol., 34, 98113, doi:10.1002/joc.3668.

    • Search Google Scholar
    • Export Citation
  • Anderson, T. W., 1971: The Statistical Analysis of Time Series. John Wiley, 704 pp.

  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, doi:10.1007/s003820100161.

    • Search Google Scholar
    • Export Citation
  • Basu, B. K., 2007: Diurnal variation in precipitation over India during the summer monsoon season: Observed and model predicted. Mon. Wea. Rev., 135, 21552167, doi:10.1175/MWR3355.1.

    • Search Google Scholar
    • Export Citation
  • Bhat, G. S., and S. Kumar, 2015: Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season. J. Geophys. Res. Atmos., 120, 17101722, doi:10.1002/2014JD022552.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., and R. S. Nanjundiah, 2012: Space–time scales of northward propagation of convection during boreal summer. Mon. Wea. Rev., 140, 38573866, doi:10.1175/MWR-D-12-00088.1.

    • Search Google Scholar
    • Export Citation
  • Chattopadhyay, R., B. N. Goswami, A. K. Sahai, and K. Fraedrich, 2009: Role of stratiform rainfall in modifying the northward propagation of monsoon intraseasonal oscillation. J. Geophys. Res., 114, D19114, doi:10.1029/2009JD011869.

    • Search Google Scholar
    • Export Citation
  • Choudhury, A. D., and R. Krishnan, 2011: Dynamical response of the South Asian monsoon trough to latent heating from stratiform and convective precipitation. J. Atmos. Sci., 68, 13471363, doi:10.1175/2011JAS3705.1.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., and S. A. Rutledge, 1998: Vertical motion, diabatic heating, and rainfall characteristics in north Australia convective systems. Quart. J. Roy. Meteor. Soc., 124, 11331162, doi:10.1002/qj.49712454806.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, doi:10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DeHart, J., R. A. Houze Jr., and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environment shear. J. Atmos. Sci., 71, 27132732, doi:10.1175/JAS-D-13-0298.1.

    • Search Google Scholar
    • Export Citation
  • Deshpande, N. R., and B. N. Goswami, 2014: Modulation of the diurnal cycle of rainfall over India by intraseasonal variations of Indian summer monsoon. Int. J. Climatol., 34, 793807, doi:10.1002/joc.3719.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., and P. V. Joseph, 2003: On breaks of the Indian monsoon. J. Earth Syst. Sci., 112, 529558.

  • Goswami, B. N., 2005: Intraseasonal variability (ISV) of South Asian summer monsoon. Intraseasonal Variability of the Atmosphere–Ocean Climate System, K. Lau and D. Waliser, Eds., Springer-Praxis, 19–61.

  • Goswami, B. N., and R. S. Ajaya Mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198, doi:10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and P. Xavier, 2003: Potential predictability and extended range prediction of Indian summer monsoon breaks. Geophys. Res. Lett., 30, 1966, doi:10.1029/2003GL017810.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, doi:10.1002/qj.106.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys., 53, 9941021, doi:10.1002/2015RG000488.

    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., and P. J. Webster, 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20, 44024424, doi:10.1175/JCLI4252.1.

    • Search Google Scholar
    • Export Citation
  • Joseph, P. V., and S. Sijikumar, 2004: Intraseasonal variability of the low-level jet stream of the Asian summer monsoon. J. Climate, 17, 14491458, doi:10.1175/1520-0442(2004)017<1449:IVOTLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of monsoon system. Part I: Observational aspects. J. Atmos. Sci., 33, 19371954, doi:10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., C. Zhang, and M. Sugi, 2000: Dynamics of breaks in the Indian summer monsoon. J. Atmos. Sci., 57, 13541372, doi:10.1175/1520-0469(2000)057<1354:DOBITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kulkarni, A., S. S. Sabade, and R. H. Kripalani, 2009: Spatial variability of intra-seasonal oscillations during extreme Indian monsoons. Int. J. Climatol., 29, 19451955, doi:10.1002/joc.1844.

    • Search Google Scholar
    • Export Citation
  • Kulkarni, A., R. Kriplani, S. Sabade, and M. Rajeevan, 2011: Role of intra-seasonal oscillations in modulating Indian summer monsoon rainfall. Climate Dyn., 36, 10051021, doi:10.1007/s00382-010-0973-1.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., K. R. Kumar, R. G. Ashrit, N. R. Deshpande, and J. W. Hansen, 2004: Climate impacts on Indian agriculture. Int. J. Climatol., 24, 13751393, doi:10.1002/joc.1081.

    • Search Google Scholar
    • Export Citation
  • Liu, C., M. W. Moncrieff, and J. D. Tuttle, 2008: A note on propagating rainfall episodes over the Bay of Bengal. Quart. J. Roy. Meteor. Soc., 134, 787792, doi:10.1002/qj.246.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., D. Ostrenga, W. Teng, and S. Kempler, 2012: Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull. Amer. Meteor. Soc., 93, 13171325, doi:10.1175/BAMS-D-11-00152.1.

    • Search Google Scholar
    • Export Citation
  • Mao, J. Y., and G. X. Wu, 2012: Diurnal variations of summer precipitation over the Asian monsoon region as revealed by TRMM satellite data. Sci. China Earth Sci., 55, 554566, doi:10.1007/s11430-011-4315-x.

    • Search Google Scholar
    • Export Citation
  • Mohan, T. S., and T. N. Rao, 2012: Variability of the thermal structure of the atmosphere during wet and dry spells over southeast India. Quart. J. Roy. Meteor. Soc., 138, 18391851, doi:10.1002/qj.1922.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., J. Bhate, O. P. Sreejith, and H. R. Hatwar, 2011: Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India. Climate Dyn., 36, 4155, doi:10.1007/s00382-009-0634-4.

    • Search Google Scholar
    • Export Citation
  • Pillai, P. A., and A. K. Sahai, 2014: Moist dynamics of active/break cycle of Indian summer monsoon rainfall from NCEPR2 and MERRA reanalysis. Int. J. Climatol., 34, 14291444, doi:10.1002/joc.3774.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, S., and D. R. Sikka, 2013: Variability of the TRMM-PR total and convective and stratiform rain fractions over the Indian region during the summer monsoon. Climate Dyn., 41, 2144, doi:10.1007/s00382-012-1502-1.

    • Search Google Scholar
    • Export Citation
  • Prasanna, V., 2014: Impact of monsoon rainfall on the total food grain yield over India. J. Earth Syst. Sci., 123, 11291145, doi:10.1007/s12040-014-0444-x.

    • Search Google Scholar
    • Export Citation
  • Raghavan, K., 1973: Break-monsoon over India. Mon. Wea. Rev., 101, 3343, doi:10.1175/1520-0493(1973)101<0033:BOI>2.3.CO;2.

  • Rajeevan, M., J. Bhate, J. D. Kale, and B. Lal, 2006: High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Curr. Sci., 91, 296306.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., S. Gadgil, and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 119, 229247, doi:10.1007/s12040-010-0019-4.

    • Search Google Scholar
    • Export Citation
  • Ramamurthy, K., 1969: Monsoon of India: Some aspects of the “break” in the Indian southwest monsoon during July and August. India Meteorological Department FMU Rep. IV-18-3, 13 pp.

  • Rao, T. N., K. N. Uma, T. M. Satyanarayana, and D. N. Rao, 2009: Differences in draft core statistics from the wet spell to dry spell over Gandaki, India (13.5°N, 79.2°E). Mon. Wea. Rev., 137, 42934306, doi:10.1175/2009MWR3057.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., A. J. Hill, V. E. Toma, M. D. Zuluaga, P. J. Webster, and R. A. Houze Jr., 2015: Multiscale analysis of three consecutive years of anomalous flooding in Pakistan. Quart. J. Roy. Meteor. Soc., 141, 12591276, doi:10.1002/qj.2433.

    • Search Google Scholar
    • Export Citation
  • Ratan, R., and V. Venugopal, 2013: Wet and dry spell characteristics of global tropical rainfall. Water Resour. Res., 49, 38303841, doi:10.1002/wrcr.20275.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2011: Characteristics of precipitating convective systems in the South Asian monsoon. J. Hydrometeor., 12, 326, doi:10.1175/2010JHM1289.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., S. Medina, and R. A. Houze Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, doi:10.1175/2009JCLI3140.1.

    • Search Google Scholar
    • Export Citation
  • Roy, S. S., and R. C. Balling Jr., 2007: Diurnal variations in summer season precipitation in India. Int. J. Climatol., 27, 969976, doi:10.1002/joc.1458.

    • Search Google Scholar
    • Export Citation
  • Saha, S. B., S. S. Roy, S. K. Roy Bhowmik, and P. K. Kundu, 2014: Intra-seasonal variability of cloud amount over the Indian subcontinent during the monsoon season as observed by TRMM Precipitation Radar. Geofizika, 31, 2853, doi:10.15233/gfz.2014.31.2.

    • Search Google Scholar
    • Export Citation
  • Sahany, S., V. Venugopal, and R. S. Nanjundiah, 2010: Diurnal-scale signatures of monsoon rainfall over the Indian region from TRMM satellite observations. J. Geophys. Res., 115, D02103, doi:10.1029/2009JD012644.

    • Search Google Scholar
    • Export Citation
  • Saikranthi, K., T. N. Rao, M. Rajeevan, and S. V. B. Rao, 2013: Identification and validation of homogeneous rainfall zones in India using correlation analysis. J. Hydrometeor., 14, 304317, doi:10.1175/JHM-D-12-071.1.

    • Search Google Scholar
    • Export Citation
  • Saikranthi, K., T. N. Rao, B. Radhakrishna, and S. V. B. Rao, 2014: Morphology of the vertical structure of precipitation over India and adjoining oceans based on long-term measurements of TRMM PR. J. Geophys. Res. Atmos., 119, 84338449, doi:10.1002/2014JD021774.

    • Search Google Scholar
    • Export Citation
  • Sharmila, S., and Coauthors, 2013: Role of ocean–atmosphere interaction on northward propagation of Indian summer monsoon intra-seasonal oscillations (MISO). Climate Dyn., 41, 16511669, doi:10.1007/s00382-013-1854-1.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 18401853, doi:10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Singh, D., M. Tsiang, B. Rajaratnam, and N. S. Diffenbaugh, 2014: Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat. Climate Change, 4, 456461, doi:10.1038/nclimate2208.

    • Search Google Scholar
    • Export Citation
  • Singh, N., and A. Ranade, 2010: The wet and dry spells across India during 1951–2007. J. Hydrometeor., 11, 2645, doi:10.1175/2009JHM1161.1.

    • Search Google Scholar
    • Export Citation
  • Singh, P., and K. Nakamura, 2009: Diurnal variation in summer precipitation over the central Tibetan Plateau. J. Geophys. Res., 114, D20107, doi:10.1029/2009JD011788.

    • Search Google Scholar
    • Export Citation
  • Sunilkumar, K., T. N. Rao, and S. Satheeshkumar, 2016: Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in Southeast India. Hydrol. Earth Syst. Sci., 20, 17191735, doi:10.5194/hess-20-1719-2016.

    • Search Google Scholar
    • Export Citation
  • Waliser, D., 2006: Intraseasonal variability in Asian monsoons. The Asian Monsoon, B. Wang, Ed., Springer-Praxis, 203–257.

  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, doi:10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., C. D. Hoyos, and P. J. Webster, 2010: Spatial and temporal distribution of latent heating in the South Asian monsoon region. J. Climate, 23, 20102029, doi:10.1175/2009JCLI3026.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 29
PDF Downloads 9 9 9

Differences in the Climatological Characteristics of Precipitation between Active and Break Spells of the Indian Summer Monsoon

View More View Less
  • 1 National Atmospheric Research Laboratory, Gadanki, India
  • | 2 Indian Institute of Science, Bangalore, India
  • | 3 Department of Physics, Sri Venkateswara University, Tirupati, India
Restricted access

Abstract

Climatological characteristics of precipitation during the active and break spells of the monsoon are studied using 15 years of TRMM measurements. The spatial variation of rain fraction suggests that most of the seasonal rainfall occurs in spells of active monsoon over India, except for the zones along the east coast. The broader reflectivity distribution at higher altitudes and larger average storm height during active spells indicate the high prevalence of deep systems during this spell. The spatial distribution of the occurrence and fraction of different types of rain exhibits large variability from land to ocean and between the spells. The higher occurrence and fraction of stratiform rain during the active spell, particularly over the core monsoon zone, is due to the prevalence of organized mesoscale systems with large stratiform portions. The break spells are characterized by higher occurrence of shallow rain and larger fraction of convective rain. While an evening peak is observed over land during the break spell, the phase of the diurnal cycle exhibits large spatial variability during the active spell. The rainfall peaks from late night to midnight in southeastern India and in the morning near the foothills of the Himalayas during the active spell. The diurnal and semidiurnal components together explain more than 90% of total variance over many of the zones during both spells. The observed differences in precipitation between the spells are discussed in light of the differences in synoptic- and mesoscale mechanisms responsible for the production of precipitation.

Corresponding author address: Dr. T. Narayana Rao, National Atmospheric Research Laboratory, Department of Space, Government of India, Gadanki 517 112, India. E-mail: tnrao@narl.gov.in

Abstract

Climatological characteristics of precipitation during the active and break spells of the monsoon are studied using 15 years of TRMM measurements. The spatial variation of rain fraction suggests that most of the seasonal rainfall occurs in spells of active monsoon over India, except for the zones along the east coast. The broader reflectivity distribution at higher altitudes and larger average storm height during active spells indicate the high prevalence of deep systems during this spell. The spatial distribution of the occurrence and fraction of different types of rain exhibits large variability from land to ocean and between the spells. The higher occurrence and fraction of stratiform rain during the active spell, particularly over the core monsoon zone, is due to the prevalence of organized mesoscale systems with large stratiform portions. The break spells are characterized by higher occurrence of shallow rain and larger fraction of convective rain. While an evening peak is observed over land during the break spell, the phase of the diurnal cycle exhibits large spatial variability during the active spell. The rainfall peaks from late night to midnight in southeastern India and in the morning near the foothills of the Himalayas during the active spell. The diurnal and semidiurnal components together explain more than 90% of total variance over many of the zones during both spells. The observed differences in precipitation between the spells are discussed in light of the differences in synoptic- and mesoscale mechanisms responsible for the production of precipitation.

Corresponding author address: Dr. T. Narayana Rao, National Atmospheric Research Laboratory, Department of Space, Government of India, Gadanki 517 112, India. E-mail: tnrao@narl.gov.in
Save