• Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adams, J. L., and D. J. Stensrud, 2007: Impact of tropical easterly waves on the North American monsoon. J. Climate, 20, 12191238, doi:10.1175/JCLI4071.1.

    • Search Google Scholar
    • Export Citation
  • Aiyyer, A., and J. Molinari, 2008: MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: Case study and idealized numerical modeling. J. Atmos. Sci., 65, 26912704, doi:10.1175/2007JAS2348.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., J. O. Roads, and S.-C. Chen, 2000: Large-scale forcing of summertime monsoon surges over the Gulf of California and the southwestern United States. J. Geophys. Res., 105, 24 45524 467, doi:10.1029/2000JD900337.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/1520-0442(2004)017<4089:IOALMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balling, R. C., 1987: Diurnal variations in Arizona monsoon precipitation frequencies. Mon. Wea. Rev., 115, 342346, doi:10.1175/1520-0493(1987)115<0342:DVIAMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, doi:10.5194/essd-5-71-2013.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1995: The parameterization of surface-fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, doi:10.1002/qj.49712152203.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., 2001: Mesoscale moisture analysis of the North American monsoon. J. Climate, 14, 121137, doi:10.1175/1520-0442(2001)013<0121:MMAOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and M. S. Fox-Rabinovitz, 2003: Multiscale diagnosis of the North American monsoon system using a variable-resolution GCM. J. Climate, 16, 19291947, doi:10.1175/1520-0442(2003)016<1929:MDOTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., P. Kallberg, S. Kobayashi, D. Dee, S. Uppala, A. J. Simmons, P. Poli, and H. Sato, 2011a: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 13811399, doi:10.1002/qj.864.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., and Coauthors, 2011b: The ERA-Interim archive, version 2.0. ERA Rep. Series 1, 23 pp.

  • Bieda, S. W., C. L. Castro, S. L. Mullen, A. C. Comrie, and E. Pytlak, 2009: The relationship of transient upper-level troughs to variability of the North American monsoon system. J. Climate, 22, 42134227, doi:10.1175/2009JCLI2487.1.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and B. Stevens, 2006: Principal component analysis of the summertime winds over the Gulf of California: A gulf surge index. Mon. Wea. Rev., 134, 33953414, doi:10.1175/MWR3253.1.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., P. E. Ciesielski, R. H. Johnson, B. D. McNoldy, and B. Stevens, 2004: The low-level circulation of the North American monsoon as revealed by QuikSCAT. Geophys. Res. Lett., 31, L10109, doi:10.1029/2004GL020009.

    • Search Google Scholar
    • Export Citation
  • Brenner, I. S., 1974: A surge of maritime tropical air—Gulf of California to the southwestern United States. Mon. Wea. Rev., 102, 375389, doi:10.1175/1520-0493(1974)102<0375:ASOMTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., T. B. McKee, and R. A. Pielke Sr., 2001: The relationship of the North American monsoon to tropical and North Pacific sea surface temperatures as revealed by observational analyses. J. Climate, 14, 44494473, doi:10.1175/1520-0442(2001)014<4449:TROTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke Sr., and J. O. Adegoke, 2007a: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part I: Model climatology (1950–2002). J. Climate, 20, 38403865, doi:10.1175/JCLI4211.1.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., S. D. Schubert, and P. J. Pegion, 2007b: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part II: Model climate variability. J. Climate, 20, 38663887, doi:10.1175/JCLI4212.1.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., H.-I. Chang, F. Dominguez, C. Carrillo, J.-K. Schemm, and H.-M. H. Juang, 2012: Can a regional climate model improve the ability to forecast the North American monsoon? J. Climate, 25, 82128237, doi:10.1175/JCLI-D-11-00441.1.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., A. C. Comrie, and D. M. Liverman, 2002: Intraseasonal variability associated with wet monsoons in southeast Arizona. J. Climate, 15, 24772490, doi:10.1175/1520-0442(2002)015<2477:IVAWWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciancarelli, B., C. L. Castro, C. Woodhouse, F. Dominguez, H.-I. Chang, C. Carrillo, and D. Griffin, 2013: Dominant patterns of US warm season precipitation variability in a fine resolution observational record, with focus on the southwest. Int. J. Climatol., 34, 687707, doi:10.1002/joc.3716.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. J. Iacono, and J. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15 76115 785, doi:10.1029/92JD01419.

    • Search Google Scholar
    • Export Citation
  • Collier, J. C., and G. J. Zhang, 2007: Effects of increased horizontal resolution on simulation of the North American monsoon in the NCAR CAM3: An evaluation based on surface, satellite, and reanalysis data. J. Climate, 20, 18431861, doi:10.1175/JCLI4099.1.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., and R. Seager, 2013: The response of the North American monsoon to increased greenhouse gas forcing. J. Geophys. Res. Atmos., 118, 16901699, doi:10.1002/jgrd.50111.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., M. J. Dickinson, and L. F. Bosart, 2009: The contribution of eastern North Pacific tropical cyclones to the rainfall climatology of the southwest United States. Mon. Wea. Rev., 137, 24152435, doi:10.1175/2009MWR2768.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2014: Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci., 7, 583587, doi:10.1038/ngeo2201.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, A. Rosati, G. A. Vecchi, and A. T. Wittenberg, 2015: A link between the hiatus in global warming and North American drought. J. Climate, 28, 38343845, doi:10.1175/JCLI-D-14-00616.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, doi:10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., 1995: The summertime low-level jet over the Gulf of California. Mon. Wea. Rev., 123, 23342347, doi:10.1175/1520-0493(1995)123<2334:TSLLJO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., and J. C. Leal, 2003: Summertime surges over the Gulf of California: Aspects of their climatology, mean structure, and evolution from radiosonde, NCEP reanalysis, and rainfall data. Wea. Forecasting, 18, 5574, doi:10.1175/1520-0434(2003)018<0055:SSOTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 16651667, doi:10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Erfani, E., and D. Mitchell, 2014: A partial mechanistic understanding of the North American monsoon. J. Geophys. Res. Atmos., 119, 13 09613 115, doi:10.1002/2014JD022038.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., and C. Frankignoul, 2005: The transient atmospheric response to midlatitude SST anomalies. J. Climate, 18, 10491067, doi:10.1175/JCLI-3313.1.

    • Search Google Scholar
    • Export Citation
  • Feser, F., B. Rockel, H. von Storch, J. Winterfeldt, and M. Zahn, 2011: Regional climate models add value to global model data: A review and selected examples. Bull. Amer. Meteor. Soc., 92, 11811192, doi:10.1175/2011BAMS3061.1.

    • Search Google Scholar
    • Export Citation
  • Finch, Z. O., and R. H. Johnson, 2010: Observational analysis of an upper-level inverted trough during the 2004 North American monsoon experiment. Mon. Wea. Rev., 138, 35403555, doi:10.1175/2010MWR3369.1.

    • Search Google Scholar
    • Export Citation
  • Freidenreich, S. M., and V. Ramaswamy, 1999: A new multiple-band solar radiative parameterization for general circulation models. J. Geophys. Res., 104, 31 38931 409, doi:10.1029/1999JD900456.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geil, K. L., Y. L. Serra, and X. Zeng, 2013: Assessment of CMIP5 model simulations of the North American monsoon system. J. Climate, 26, 87878801, doi:10.1175/JCLI-D-13-00044.1.

    • Search Google Scholar
    • Export Citation
  • Gilman, D. L., F. J. Fuglister, and J. M. Mitchell Jr., 1963: On the power spectrum of red noise. J. Atmos. Sci., 20, 182184, doi:10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDLs CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697, doi:10.1175/JCLI3630.1.

    • Search Google Scholar
    • Export Citation
  • Gochis, D., C. Watts, J. Garatuza-Payan, and W. Shuttleworth, 2004: Analysis of 2002 and 2003 warm season precipitation from the North American monsoon experiment event rain gauge network. Mon. Wea. Rev., 132, 29382953, doi:10.1175/MWR2838.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, doi:10.5194/os-1-45-2005.

    • Search Google Scholar
    • Export Citation
  • Hales, J. E., 1972: Surges of maritime tropical air northward over the Gulf of California. Mon. Wea. Rev., 100, 298306, doi:10.1175/1520-0493(1972)100<0298:SOMTAN>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., M. P. Clark, M. Pagowski, G. H. Leavesley, and W. J. Gutowski, 2006: One-way coupling of an atmospheric and a hydrologic model in Colorado. J. Hydrometeor., 7, 569589, doi:10.1175/JHM512.1.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and W. Shi, 2005: Relationships between Gulf of California moisture surges and tropical cyclones in the eastern Pacific basin. J. Climate, 18, 46014620, doi:10.1175/JCLI3551.1.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 298306, doi:10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, and C. Hain, 2004: Relationships between Gulf of California moisture surges and precipitation in the southwestern United States. J. Climate, 17, 29832997, doi:10.1175/1520-0442(2004)017<2983:RBGOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, H., and F. Dominguez, 2015: Evaluation of oceanic and terrestrial sources of moisture for the North American monsoon using numerical models and precipitation stable isotopes. J. Hydrometeor., 16, 1935, doi:10.1175/JHM-D-14-0073.1.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, doi:10.1175/JCLI-D-14-00112.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and N. Lau, 2008: Intraseasonal teleconnection between North American and western North Pacific monsoons with 20-day time scale. J. Climate, 21, 26642679, doi:10.1175/2007JCLI2024.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and D. E. Waliser, 2009: Two dominant subseasonal variability modes of the eastern Pacific ITCZ. Geophys. Res. Lett., 36, L04704, doi:10.1029/2008GL036820.

    • Search Google Scholar
    • Export Citation
  • Kapnick, S. B., and T. L. Delworth, 2013: Controls of global snow under a changed climate. J. Climate, 26, 55375562, doi:10.1175/JCLI-D-12-00528.1.

    • Search Google Scholar
    • Export Citation
  • Kapnick, S. B., T. L. Delworth, M. Ashfaq, S. Malyshev, and P. C. D. Milly, 2014: Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci., 7, 834840, doi:10.1038/ngeo2269.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2009: Global perspective of the quasi-biweekly oscillation. J. Climate, 22, 13401359, doi:10.1175/2008JCLI2368.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and E. A. Hall-McKim, 2004: Intraseasonal modulation of precipitation over the North American monsoon region. Proc. 15th Symp. on Global Change and Climate Variations, Seattle, WA, Amer. Meteor. Soc., 11.4. [Available online at http://ams.confex.com/ams/pdfpapers/72428.pdf.]

  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, and K. H. Straub, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kim, H., G. A. Vecchi, T. R. Knutson, W. G. Anderson, T. L. Delworth, A. Rosati, F. Zeng, and M. Zhao, 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 27, 80348054, doi:10.1175/JCLI-D-13-00475.1.

    • Search Google Scholar
    • Export Citation
  • King, T. S., and R. C. Balling, 1994: Diurnal variations in Arizona monsoon lightning data. Mon. Wea. Rev., 122, 16591664, doi:10.1175/1520-0493(1994)122<1659:DVIAML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ladwig, W. C., and D. J. Stensrud, 2009: Relationship between tropical easterly waves and precipitation during the North American monsoon. J. Climate, 22, 258271, doi:10.1175/2008JCLI2241.1.

    • Search Google Scholar
    • Export Citation
  • Lee, H.-C., and Coauthors, 2013: Impact of climate warming on upper layer of the Bering Sea. Climate Dyn., 40, 327340, doi:10.1007/s00382-012-1301-8.

    • Search Google Scholar
    • Export Citation
  • Liang, X., J. Zhu, K. E. Kunkel, M. Ting, and J. X. L. Wang, 2008: Do CGCMs simulate the North American monsoon precipitation seasonal–interannual variability? J. Climate, 21, 44244448, doi:10.1175/2008JCLI2174.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., B. E. Mapes, K. M. Weickmann, G. N. Kiladis, S. D. Schubert, M. J. Suarez, J. T. Bacmeister, and M.-I. Lee, 2008: North American monsoon and convectively coupled equatorial waves simulated by IPCC AR4 coupled GCMs. J. Climate, 21, 29192937, doi:10.1175/2007JCLI1815.1.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., 2001: The numerical representation of entrainment in parameterizations of boundary layer turbulent mixing. Mon. Wea. Rev., 129, 11481163, doi:10.1175/1520-0493(2001)129<1148:TNROEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2006: The effect of the MJO on the North American monsoon. J. Climate, 19, 333343, doi:10.1175/JCLI3684.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, P., and D. Jacob, 2005: Influence of regional scale information on the global circulation: A two-way nesting climate simulation. Geophys. Res. Lett., 32, L18706, doi:10.1029/2005GL023351.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558, doi:10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

  • Mejia, J. F., M. W. Douglas, and P. J. Lamb, 2010: Aircraft observations of the 12–15 July 2004 moisture surge event during the North American monsoon experiment. Mon. Wea. Rev., 138, 34983513, doi:10.1175/2010MWR3228.1.

    • Search Google Scholar
    • Export Citation
  • Mejia, J. F., M. W. Douglas, and P. J. Lamb, 2015: Observational investigation of relationships between moisture surges and mesoscale- to large-scale convection during the North American monsoon. Int. J. Climatol., 36, 25552569, doi:10.1002/joc.4512.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., Z. I. Janjić, S. Ničković, D. Gavrilov, and D. G. Deaven, 1988: The step-mountain coordinate: Model description and performance for cases of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment. Mon. Wea. Rev., 116, 14931518, doi:10.1175/1520-0493(1988)116<1493:TSMCMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and A. B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model. J. Hydrometeor., 3, 283299, doi:10.1175/1525-7541(2002)003<0283:GMOLWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and Coauthors, 2014: An enhanced model of land water and energy for global hydrologic and Earth-system studies. J. Hydrometeor., 15, 17391761, doi:10.1175/JHM-D-13-0162.1.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Intraseasonal modulation of summer precipitation over North America. Mon. Wea. Rev., 128, 14901505, doi:10.1175/1520-0493(2000)128<1490:IMOSPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J.-K. Schemm, H. M. H. Juang, R. W. Higgins, and Y. Song, 2005: Impact of model resolution on the prediction of summer precipitation over the United States and Mexico. J. Climate, 18, 39103927, doi:10.1175/JCLI3513.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Knight, M. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125, 26992708, doi:10.1175/1520-0493(1997)125<2699:PVEWAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, doi:10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., J. T. Schmitz, and N. O. Rennó, 1998: Intraseasonal variability of the summer monsoon over southeast Arizona. Mon. Wea. Rev., 126, 30163035, doi:10.1175/1520-0493(1998)126<3016:IVOTSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2015: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079, doi:10.1175/JCLI-D-15-0216.1.

    • Search Google Scholar
    • Export Citation
  • Newman, A. J., and R. H. Johnson, 2012a: Mechanisms for precipitation enhancement in a North American monsoon upper-tropospheric trough. J. Atmos. Sci., 69, 17751792, doi:10.1175/JAS-D-11-0223.1.

    • Search Google Scholar
    • Export Citation
  • Newman, A. J., and R. H. Johnson, 2012b: Simulation of a North American monsoon gulf surge event and comparison to observations. Mon. Wea. Rev., 140, 25342554, doi:10.1175/MWR-D-11-00223.1.

    • Search Google Scholar
    • Export Citation
  • Newman, A. J., and R. H. Johnson, 2013: Dynamics of a simulated North American monsoon gulf surge event. Mon. Wea. Rev., 141, 32383253, doi:10.1175/MWR-D-12-00294.1.

    • Search Google Scholar
    • Export Citation
  • Nolin, A. W., and E. A. Hall-McKim, 2006: Frequency modes of monsoon precipitation in Arizona and New Mexico. Mon. Wea. Rev., 134, 37743781, doi:10.1175/MWR3244.1.

    • Search Google Scholar
    • Export Citation
  • Pascale, S., and S. Bordoni, 2016: Tropical and extratropical controls of Gulf of California surges and summertime precipitation over the southwestern United States. Mon. Wea. Rev., 144, 26952718, doi:10.1175/MWR-D-15-0429.1.

    • Search Google Scholar
    • Export Citation
  • Pascale, S., V. Lucarini, X. Feng, A. Porporato, and S. Hasson, 2016: Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Climate Dyn., 46, 13311350, doi:10.1007/s00382-015-2648-4.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, doi:10.1016/j.jcp.2007.07.022.

    • Search Google Scholar
    • Export Citation
  • Pytlak, E., M. Goering, and A. Bennett, 2005: Upper-tropospheric troughs and their interaction with the North American monsoon. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., JP2.3. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_85393.htm.]

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Ripa, P., and S. G. Marinone, 1989: Seasonal variability of temperature, salinity, velocity, vorticity and sea level in the central Gulf of California, as inferred from historical data. Quart. J. Roy. Meteor. Soc., 115, 887913, doi:10.1002/qj.49711548807.

    • Search Google Scholar
    • Export Citation
  • Rogers, P. J., and R. H. Johnson, 2007: Analysis of the 13–14 July gulf surge event during the 2004 North American monsoon experiment. Mon. Wea. Rev., 135, 30983117, doi:10.1175/MWR3450.1.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 12271282, doi:10.1002/qj.49712354106.

    • Search Google Scholar
    • Export Citation
  • Schiffer, N. J., and S. W. Nesbitt, 2012: Flow, moisture, and thermodynamic variability associated with Gulf of California surges within the North American monsoon. J. Climate, 25, 42204241, doi:10.1175/JCLI-D-11-00266.1.

    • Search Google Scholar
    • Export Citation
  • Schmitz, J. T., and S. L. Mullen, 1996: Water vapor transport associated with the summertime North American monsoon as depicted by ECMWF analyses. J. Climate, 9, 16211634, doi:10.1175/1520-0442(1996)009<1621:WVTAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., E. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, M. D., and V. Ramaswamy, 1999: Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: A GCM experiment. J. Geophys. Res., 104, 94679488, doi:10.1029/1999JD900003.

    • Search Google Scholar
    • Export Citation
  • Seastrand, S., Y. Serra, C. Castro, and E. Ritchie, 2015: The dominant synoptic-scale modes of North American monsoon precipitation. Int. J. Climatol., 35, 20192032, doi:10.1002/joc.4104.

    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kiladis, and M. F. Cronin, 2008: Horizontal and vertical structure of easterly waves in the Pacific ITCZ. J. Atmos. Sci., 65, 12661284, doi:10.1175/2007JAS2341.1.

    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kiladis, and K. I. Hodges, 2010: Tracking and mean structure of easterly waves over the Intra-Americas Sea. J. Climate, 23, 48234840, doi:10.1175/2010JCLI3223.1.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46, 14191427, doi:10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Small, E. E., 2001: The influence of soil moisture anomalies on variability of the North American monsoon system. Geophys. Res. Lett., 28, 139142, doi:10.1029/2000GL011652.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., R. L. Gall, and M. K. Nordquist, 1997: Surges over the Gulf of California during the Mexican monsoon. Mon. Wea. Rev., 125, 417437, doi:10.1175/1520-0493(1997)125<0417:SOTGOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stern, W. F., and R. T. Pierrehumbert, 1988: The impact of an orographic gravity wave drag parameterization on extended range predictions with a GCM. Preprints, Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 745750.

  • Stratton, R. A., 1999: A high resolution AMIP integration using the Hadley Centre model HadAM2b. Climate Dyn., 15, 928, doi:10.1007/s003820050265.

    • Search Google Scholar
    • Export Citation
  • Svoma, B. M., 2010: The influence of monsoonal gulf surges on precipitation and diurnal precipitation patterns in central Arizona. Wea. Forecasting, 25, 281289, doi:10.1175/2009WAF2222299.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2013: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 95, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, doi:10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., and Coauthors, 2016: The resolution dependence of U.S. precipitation extremes in response to CO2 forcing. J. Climate, doi:10.1175/JCLI-D-16-0307.1, in press.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2013: Multi-year predictions of North Atlantic hurricane frequency: Promise and limitations. J. Climate, 26, 53375357, doi:10.1175/JCLI-D-12-00464.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, doi:10.1175/JCLI-D-14-00158.1.

    • Search Google Scholar
    • Export Citation
  • Watt-Meyer, O., and P. J. Kushner, 2015: Decomposition of atmospheric disturbances into standing and travelling components, with applications to Northern Hemisphere planetary waves and stratosphere–troposphere coupling. J. Atmos. Sci., 72, 787802, doi:10.1175/JAS-D-14-0214.1.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722, doi:10.1175/JCLI3631.1.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, T. L. Delworth, G. A. Vecchi, and F. Zeng, 2014: ENSO modulation: Is it decadally predictable? J. Climate, 27, 26672681, doi:10.1175/JCLI-D-13-00577.1.

    • Search Google Scholar
    • Export Citation
  • Wood, K. M., and E. A. Ritchie, 2013: An updated climatology of tropical cyclone impacts on the southwestern United States. Mon. Wea. Rev., 141, 43224336, doi:10.1175/MWR-D-13-00078.1.

    • Search Google Scholar
    • Export Citation
  • Wu, M.-L. C., S. D. Schubert, M. J. Suarez, and N. E. Huang, 2009: An analysis of moisture fluxes into the Gulf of California. J. Climate, 22, 22162239, doi:10.1175/2008JCLI2525.1.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and Coauthors, 2013: A predictable AMO-like pattern in the GFDL fully coupled ensemble initialization and decadal forecasting system. J. Climate, 26, 650661, doi:10.1175/JCLI-D-12-00231.1.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., 2004: Dynamic mechanisms of the gulf surge. J. Geophys. Res., 109, D10107, doi:10.1029/2004JD004616.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 23
PDF Downloads 7 7 7

The Impact of Horizontal Resolution on North American Monsoon Gulf of California Moisture Surges in a Suite of Coupled Global Climate Models

View More View Less
  • 1 California Institute of Technology, Pasadena, California
  • | 2 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 3 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
  • | 4 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
Restricted access

Abstract

The impact of atmosphere and ocean horizontal resolution on the climatology of North American monsoon Gulf of California (GoC) moisture surges is examined in a suite of global circulation models (CM2.1, FLOR, CM2.5, CM2.6, and HiFLOR) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). These models feature essentially the same physical parameterizations but differ in horizontal resolution in either the atmosphere (≃200, 50, and 25 km) or the ocean (≃1°, 0.25°, and 0.1°). Increasing horizontal atmospheric resolution from 200 to 50 km results in a drastic improvement in the model’s capability of accurately simulating surge events. The climatological near-surface flow and moisture and precipitation anomalies associated with GoC surges are overall satisfactorily simulated in all higher-resolution models. The number of surge events agrees well with reanalyses, but models tend to underestimate July–August surge-related precipitation and overestimate September surge-related rainfall in the southwestern United States. Large-scale controls supporting the development of GoC surges, such as tropical easterly waves (TEWs), tropical cyclones (TCs), and trans-Pacific Rossby wave trains (RWTs), are also well captured, although models tend to underestimate the TEW and TC magnitude and number. Near-surface GoC surge features and their large-scale forcings (TEWs, TCs, and RWTs) do not appear to be substantially affected by a finer representation of the GoC at higher ocean resolution. However, the substantial reduction of the eastern Pacific warm sea surface temperature bias through flux adjustment in the Forecast-Oriented Low Ocean Resolution (FLOR) model leads to an overall improvement of tropical–extratropical controls on GoC moisture surges and the seasonal cycle of precipitation in the southwestern United States.

Corresponding author address: Salvatore Pascale, California Institute of California, 1200 E. California Blvd., Pasadena, CA 91125. E-mail: spascale@gps.caltech.edu

Abstract

The impact of atmosphere and ocean horizontal resolution on the climatology of North American monsoon Gulf of California (GoC) moisture surges is examined in a suite of global circulation models (CM2.1, FLOR, CM2.5, CM2.6, and HiFLOR) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). These models feature essentially the same physical parameterizations but differ in horizontal resolution in either the atmosphere (≃200, 50, and 25 km) or the ocean (≃1°, 0.25°, and 0.1°). Increasing horizontal atmospheric resolution from 200 to 50 km results in a drastic improvement in the model’s capability of accurately simulating surge events. The climatological near-surface flow and moisture and precipitation anomalies associated with GoC surges are overall satisfactorily simulated in all higher-resolution models. The number of surge events agrees well with reanalyses, but models tend to underestimate July–August surge-related precipitation and overestimate September surge-related rainfall in the southwestern United States. Large-scale controls supporting the development of GoC surges, such as tropical easterly waves (TEWs), tropical cyclones (TCs), and trans-Pacific Rossby wave trains (RWTs), are also well captured, although models tend to underestimate the TEW and TC magnitude and number. Near-surface GoC surge features and their large-scale forcings (TEWs, TCs, and RWTs) do not appear to be substantially affected by a finer representation of the GoC at higher ocean resolution. However, the substantial reduction of the eastern Pacific warm sea surface temperature bias through flux adjustment in the Forecast-Oriented Low Ocean Resolution (FLOR) model leads to an overall improvement of tropical–extratropical controls on GoC moisture surges and the seasonal cycle of precipitation in the southwestern United States.

Corresponding author address: Salvatore Pascale, California Institute of California, 1200 E. California Blvd., Pasadena, CA 91125. E-mail: spascale@gps.caltech.edu
Save