• Abhilash, S., and Coauthors, 2014: Prediction and monitoring of monsoon intraseasonal oscillations over Indian monsoon region in an ensemble prediction system using CFSv2. Climate Dyn., 42, 28012815, doi:10.1007/s00382-013-2045-9.

    • Search Google Scholar
    • Export Citation
  • Achuthavarier, D., and V. Krishnamurthy, 2011: Role of Indian and Pacific SST in Indian summer monsoon intraseasonal variability. J. Climate, 24, 29152930, doi:10.1175/2010JCLI3639.1.

    • Search Google Scholar
    • Export Citation
  • Akhil, V. P., and Coauthors, 2014: A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal. J. Geophys. Res. Oceans, 119, 39263947, doi:10.1002/2013JC009632.

    • Search Google Scholar
    • Export Citation
  • Alessandri, A., A. Borrelli, A. Cherchi, S. Materia, A. Navarra, J.-Y. Lee, and B. Wang, 2015: Prediction of Indian summer monsoon onset using dynamical subseasonal forecasts: Effects of realistic initialization of the atmosphere. Mon. Wea. Rev., 143, 778793, doi:10.1175/MWR-D-14-00187.1.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and M. J. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, doi:10.1007/s003820100161.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., J. Ardizzone, and R. N. Hoffman, 2008: Application of satellite surface wind data to ocean wind analysis. Remote Sensing System Engineering, P. Ardanuy and J. Puschell, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7087), 70870B, doi:10.1117/12.795371.

  • Bernie, D., E. Guilyardi, G. Madec, J. Slingo, and S. Woolnough, 2007: Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: A diurnally forced OGCM. Climate Dyn., 29, 575590, doi:10.1007/s00382-007-0249-6.

    • Search Google Scholar
    • Export Citation
  • Chatterjee, P., and B. N. Goswami, 2004: Structure, genesis and scale selection of the tropical quasi-biweekly mode. Quart. J. Roy. Meteor. Soc., 130, 11711194, doi:10.1256/qj.03.133.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. Qian, K. E. Trenberth, and J. D. Milliman, 2009: Changes in continental freshwater discharge from 1948 to 2004. J. Climate, 22, 27732792, doi:10.1175/2008JCLI2592.1.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., J. Mignot, A. Lazar, and S. Cravatte, 2007: Control of salinity on the mixed layer depth in the world ocean: 1. General description. J. Geophys. Res., 112, C06011, doi:10.1029/2006JC003953.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Drbohlav, H.-K. L., and B. Wang, 2005: Mechanism of the northward-propagating intraseasonal oscillation: Insights from a zonally symmetric model. J. Climate, 18, 952972, doi:10.1175/JCLI3306.1.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. App. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duncan, B., and W. Han, 2009: Indian Ocean intraseasonal sea surface temperature variability during boreal summer: Madden-Julian oscillation versus submonthly forcing and processes. J. Geophys. Res., 114, C05002, doi:10.1029/2008JC004958.

    • Search Google Scholar
    • Export Citation
  • Felton, C. S., B. Subrahmanyam, V. S. N. Murty, and J. F. Shriver, 2014: Estimation of the barrier layer thickness in the Indian Ocean using Aquarius salinity. J. Geophys. Res. Oceans, 119, 42004213, doi:10.1002/2013JC009759.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2004: Differences of boreal summer intraseasonal oscillations simulated in an atmosphere–ocean coupled model and an atmosphere-only model. J. Climate, 17, 12631271, doi:10.1175/1520-0442(2004)017<1263:DOBSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, and T. Li, 2002: Impacts of air–sea coupling on the simulation of mean Asian summer monsoon in the ECHAM4 model. Mon. Wea. Rev., 130, 28892904, doi:10.1175/1520-0493(2002)130<2889:IOASCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, T. Li, and J. P. McCreary, 2003: Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 17331753, doi:10.1175/1520-0469(2003)060<1733:CBNIOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, D. E. Waliser, and L. Tao, 2007: Impact of atmosphere–ocean coupling on the predictability of monsoon intraseasonal oscillations. J. Atmos. Sci., 64, 157174, doi:10.1175/JAS3830.1.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Yang, Q. Bao, and B. Wang, 2008: Sea surface temperature feedback extends the predictability of tropical intraseasonal oscillation. Mon. Wea. Rev., 136, 577597, doi:10.1175/2007MWR2172.1.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., and K. Rupa Kumar, 2006: The Asian monsoon—Agriculture and economy. The Asian Monsoon, B. Wang, Ed., Springer, 651–683.

  • Gadgil, S., N. Joshi, and P. Joseph, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143, doi:10.1038/312141a0.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. B., R. P. M. Krishna, P. Mukhopadhyay, M. Khairoutdinov, and B. N. Goswami, 2015: Simulation of the Indian summer monsoon in the superparameterized Climate Forecast System version 2: Preliminary results. J. Climate, 28, 89889012, doi:10.1175/JCLI-D-14-00607.1.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2005: South Asian monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. Lau and D. Waliser, Eds., Springer, 19–61.

  • Goswami, B. N., and R. S. Ajaya Mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198, doi:10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., G. Wu, and T. Yasunari, 2006: The annual cycle, intraseasonal oscillations, and roadblock to seasonal predictability of the Asian summer monsoon. J. Climate, 19, 50785099, doi:10.1175/JCLI3901.1.

    • Search Google Scholar
    • Export Citation
  • Goswami, P., and K. C. Gouda, 2009: Comparative evaluation of two ensembles for long-range forecasting of monsoon rainfall. Mon. Wea. Rev., 137, 28932907, doi:10.1175/2009MWR2767.1.

    • Search Google Scholar
    • Export Citation
  • Graham, N., and T. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, doi:10.1126/science.238.4827.657.

    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the Hybrid-Coordinate Ocean Model (HYCOM). Ocean Modell., 7, 285322, doi:10.1016/j.ocemod.2003.10.002.

    • Search Google Scholar
    • Export Citation
  • Han, W., J. Vialard, M. J. McPhaden, T. Lee, Y. Masumoto, M. Feng, and W. P. M. de Ruijter, 2014: Indian Ocean decadal variability: A review. Bull. Amer. Meteor. Soc., 95, 16791703, doi:10.1175/BAMS-D-13-00028.1.

    • Search Google Scholar
    • Export Citation
  • Harrison, D., and G. A. Vecchi, 2001: January 1999 Indian Ocean cooling event. Geophys. Res. Lett., 28, 37173720, doi:10.1029/2001GL013506.

    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Ohira, and T. Nakamura, 2008: A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev., 8, 4759.

    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., and P. J. Webster, 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20, 44024424, doi:10.1175/JCLI4252.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., C. B. Montégut, J.-J. Luo, S. K. Behera, S. Masson, and T. Yamagata, 2008: The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J. Climate, 21, 56035623, doi:10.1175/2008JCLI2158.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, doi:10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., and R. Murtugudde, 2005: Internal variability of Indian Ocean SST. J. Climate, 18, 37263738, doi:10.1175/JCLI3488.1.

  • Joseph, P. V., and T. P. Sabin, 2008: An ocean–atmosphere interaction mechanism for the active break cycle of the Asian summer monsoon. Climate Dyn., 30, 553566, doi:10.1007/s00382-007-0305-2.

    • Search Google Scholar
    • Export Citation
  • Joseph, P. V., J. K. Eischeid, and R. J. Pyle, 1994: Interannual variability of the onset of the Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. J. Climate, 7, 81105, doi:10.1175/1520-0442(1994)007<0081:IVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., H. E. Hurlburt, and A. J. Wallcraft, 2005: Stability-dependent exchange coefficients for air–sea fluxes. J. Atmos. Oceanic Technol., 22, 10801094, doi:10.1175/JTECH1747.1.

    • Search Google Scholar
    • Export Citation
  • Keerthi, M., M. Lengaigne, J. Vialard, C. de Boyer Montégut, and P. Muraleedharan, 2013: Interannual variability of the tropical Indian Ocean mixed layer depth. Climate Dyn., 40, 743759, doi:10.1007/s00382-012-1295-2.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 29232942, doi:10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1997: Horizontal structure and seasonality of large-scale circulations associated with submonthly tropical convection. Mon. Wea. Rev., 125, 19972013, doi:10.1175/1520-0493(1997)125<1997:HSASOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and P. Ardanuy, 1980: The 10 to 20-day westward propagating mode and “breaks in the monsoons.” Tellus, 32A, 1526, doi:10.1111/j.2153-3490.1980.tb01717.x.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and P. H. Chan, 1985: Aspects of the 40–50 day oscillation during the northern winter as inferred from outgoing longwave radiation. Mon. Wea. Rev., 113, 18891909, doi:10.1175/1520-0493(1985)113<1889:AOTDOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and S. Yang, 1996: Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J. Climate, 9, 965985, doi:10.1175/1520-0442(1996)009<0965:SVATAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 15931606, doi:10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, K., W. Yu, T. Li, V. S. N. Murty, S. Khokiattiwong, T. R. Adi, and S. Budi, 2013: Structures and mechanisms of the first-branch northward-propagating intraseasonal oscillation over the tropical Indian Ocean. Climate Dyn., 40, 17071720, doi:10.1007/s00382-012-1492-z.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, T. Shinoda, C. Wang, R. C. Lien, J. N. Moum, and J. W. Wang, 2013: Effects of the diurnal cycle in solar radiation on the tropical Indian Ocean mixed layer variability during wintertime Madden-Julian oscillations. J. Geophys. Res. Oceans, 118, 49454964, doi:10.1002/jgrc.20395.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, T. Shinoda, C. Wang, M. Ravichandran, and J.-W. Wang, 2014: Revisiting the wintertime intraseasonal SST variability in the tropical south Indian Ocean: Impact of the ocean interannual variation. J. Phys. Oceanogr., 44, 18861907, doi:10.1175/JPO-D-13-0238.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, and T. Lee, 2015: Intraseasonal sea surface salinity variability in the equatorial Indo-Pacific Ocean induced by Madden-Julian oscillations. J. Geophys. Res. Oceans, 120, 22332258, doi:10.1002/2014JC010647.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., K. J. Priestley, D. P. Kratz, E. B. Geier, R. N. Green, B. A. Wielicki, P. O. R. Hinton, and S. K. Nolan, 2001: Determination of unfiltered radiances from the Clouds and the Earth’s Radiant Energy System instrument. J. Appl. Meteor., 40, 822835, doi:10.1175/1520-0450(2001)040<0822:DOURFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., R. Seager, and P. Thoppil, 2007: Arabian Sea response to monsoon variations. Paleoceanography, 22, PA4217, doi:10.1029/2007PA001467.

    • Search Google Scholar
    • Export Citation
  • Nair, A. K. M., and K. Rajeev, 2014: Multiyear CloudSat and CALIPSO observations of the dependence of cloud vertical distribution on sea surface temperature and tropospheric dynamics. J. Climate, 27, 672683, doi:10.1175/JCLI-D-13-00062.1.

    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., and C. Kobayashi, 1999: Precipitation and moisture balance of the Asian summer monsoon in 1991. Part II: Moisture transport and moisture balance. J. Meteor. Soc. Japan, 77, 7799.

    • Search Google Scholar
    • Export Citation
  • Papa, F., F. Durand, W. B. Rossow, A. Rahman, and S. K. Bala, 2010: Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008. J. Geophys. Res., 115, C12013, doi:10.1029/2009JC006075.

    • Search Google Scholar
    • Export Citation
  • Pegion, K., and B. P. Kirtman, 2008: The impact of air–sea interactions on the simulation of tropical intraseasonal variability. J. Climate, 21, 66166635, doi:10.1175/2008JCLI2209.1.

    • Search Google Scholar
    • Export Citation
  • Prodhomme, C., P. Terray, S. Masson, G. Boschat, and T. Izumo, 2015: Oceanic factors controlling the Indian summer monsoon onset in a coupled model. Climate Dyn., 44, 9771002, doi:10.1007/s00382-014-2200-y.

    • Search Google Scholar
    • Export Citation
  • Qi, Y., R. Zhang, T. Li, and M. Wen, 2008: Interactions between the summer mean monsoon and the intraseasonal oscillation in the Indian monsoon region. Geophys. Res. Lett., 35, L17704, doi:10.1029/2008GL034517.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., S. Gadgil, and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 119, 229247, doi:10.1007/s12040-010-0019-4.

    • Search Google Scholar
    • Export Citation
  • Rajendran, K., and A. Kitoh, 2006: Modulation of tropical intraseasonal oscillations by ocean–atmosphere coupling. J. Climate, 19, 366391, doi:10.1175/JCLI3638.1.

    • Search Google Scholar
    • Export Citation
  • Rao, R. R., and R. Sivakumar, 1999: On the possible mechanisms of the evolution of a mini-warm pool during the pre-summer monsoon season and the genesis of onset vortex in the south-eastern Arabian Sea. Quart. J. Roy. Meteor. Soc., 125, 787809, doi:10.1002/qj.49712555503.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., 2014: Sensitivity of precipitation to sea surface temperature over the tropical summer monsoon region—and its quantification. Climate Dyn., 43, 11591169, doi:10.1007/s00382-013-1881-y.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., and Y. Tanimoto, 2007: Role of SST over the Indian Ocean in influencing the intraseasonal variability of the Indian summer monsoon. J. Meteor. Soc. Japan, 85, 349358, doi:10.2151/jmsj.85.349.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., and Y. Tanimoto, 2012: Influence of sea surface temperature on the intraseasonal variability of the South China Sea summer monsoon. Climate Dyn., 39, 12091218, doi:10.1007/s00382-011-1118-x.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., Y. Tanimoto, B. Preethi, P. Terray, and R. Krishnan, 2013: Intraseasonal SST-precipitation relationship and its spatial variability over the tropical summer monsoon region. Climate Dyn., 41, 4561, doi:10.1007/s00382-012-1547-1.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., K. Ritika, P. Terray, and S. Masson, 2014: The curious case of Indian Ocean warming. J. Climate, 27, 85018509, doi:10.1175/JCLI-D-14-00471.1.

    • Search Google Scholar
    • Export Citation
  • Sabeerali, C. T., S. A. Rao, G. George, D. N. Rao, S. Mahapatra, A. Kulkarni, and R. Murtugudde, 2014: Modulation of monsoon intraseasonal oscillations in the recent warming period. J. Geophys. Res. Atmos., 119, 51855203, doi:10.1002/2013JD021261.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Saji, N., B. Goswami, P. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

  • Sengupta, D., and M. Ravichandran, 2001: Oscillations of Bay of Bengal sea surface temperature during the 1998 summer monsoon. Geophys. Res. Lett., 28, 20332036, doi:10.1029/2000GL012548.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., B. N. Goswami, and R. Senan, 2001: Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys. Res. Lett., 28, 41274130, doi:10.1029/2001GL013587.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., J.-K. E. Schemm, W. Wang, and A. Kumar, 2007: The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System: The effect of sea surface temperature. Mon. Wea. Rev., 135, 18071827, doi:10.1175/MWR3369.1.

    • Search Google Scholar
    • Export Citation
  • Sharmila, S., and Coauthors, 2013: Role of ocean–atmosphere interaction on northward propagation of Indian summer monsoon intra-seasonal oscillations (MISO). Climate Dyn., 41, 16511669, doi:10.1007/s00382-013-1854-1.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., 2005: Impact of the diurnal cycle of solar radiation on intraseasonal SST variability in the western equatorial Pacific. J. Climate, 18, 26282636, doi:10.1175/JCLI3432.1.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1975: Effect of Arabian Sea surface temperature anomaly on Indian summer monsoon: A numerical experiment with the GFDL model. J. Atmos. Sci., 32, 503511, doi:10.1175/1520-0469(1975)032<0503:EOASST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and P. Schlussel, 1994: Parameterization of the cool skin of the ocean and of the air–ocean gas transfer on the basis of modeling surface renewal. J. Phys. Oceanogr., 24, 13391346, doi:10.1175/1520-0485(1994)024<1339:POTCSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevenson, J. W., and P. P. Niiler, 1983: Upper ocean heat budget during the Hawaii-to-Tahiti shuttle experiment. J. Phys. Oceanogr., 13, 18941907, doi:10.1175/1520-0485(1983)013<1894:UOHBDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., A. Jayakumar, C. Gnanaseelan, M. Lengaigne, D. Sengupta, and B. Goswami, 2012: Processes of 30–90 days sea surface temperature variability in the northern Indian Ocean during boreal summer. Climate Dyn., 38, 19011916, doi:10.1007/s00382-011-1015-3.

    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P. N., V. S. N. Murty, and V. Ramesh Babu, 2002: Observations of barrier layer formation in the Bay of Bengal during summer monsoon. J. Geophys. Res., 107, 8018, doi:10.1029/2001JC000831.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., N. E. Graham, and C. Gautier, 1993: Comparison of the highly reflective cloud and outgoing longwave radiation datasets for use in estimating tropical deep convection. J. Climate, 6, 331353, doi:10.1175/1520-0442(1993)006<0331:COTHRC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., Z. Zhang, K. Lau, and J. H. Kim, 2001: Interannual sea surface temperature variability and the predictability of tropical intraseasonal variability. J. Atmos. Sci., 58, 25962615, doi:10.1175/1520-0469(2001)058<2596:ISSTVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., R. Murtugudde, and L. E. Lucas, 2004: Indo-Pacific Ocean response to atmospheric intraseasonal variability: 2. Boreal summer and the intraseasonal oscillation. J. Geophys. Res., 109, C03030, doi:10.1029/2003JC002002.

    • Search Google Scholar
    • Export Citation
  • Wallcraft, A. J., E. J. Metzger, and S. N. Carroll, 2009: Software design description for the Hybrid Coordinate Ocean Model (HYCOM) version 2.2. Naval Research Laboratory Tech. Rep. NRL/MR/7320-09-9166, 155 pp. [Available online at https://hycom.org/attachments/063_metzger1-2009.pdf.]

  • Wang, B., and X. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air–sea interaction in maintaining Madden–Julian oscillation. J. Climate, 11, 21162135, doi:10.1175/1520-0442-11.8.2116.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.

    • Search Google Scholar
    • Export Citation
  • Wang, J., W. Wang, X. Fu, and K.-H. Seo, 2012: Tropical intraseasonal rainfall variability in the CFSR. Climate Dyn., 38, 21912207, doi:10.1007/s00382-011-1087-0.

    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, and A. Kumar, 2009: Impacts of ocean surface on the northward propagation of the boreal summer intraseasonal oscillation in the NCEP Climate Forecast System. J. Climate, 22, 65616576, doi:10.1175/2009JCLI3007.1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., P. Xie, S.-H. Yoo, Y. Xue, A. Kumar, and X. Wu, 2011: An assessment of the surface climate in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 16011620, doi:10.1007/s00382-010-0935-7.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. Magaña, T. Palmer, J. Shukla, R. Tomas, M. U. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, doi:10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, doi:10.1038/43848.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and Coauthors, 2002: The JASMINE pilot study. Bull. Amer. Meteor. Soc., 83, 16031630, doi:10.1175/BAMS-83-11-1603.

  • Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847850, doi:10.1126/science.288.5467.847.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. Louis Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2001: Multi-stage onset of the summer monsoon over the western North Pacific. Climate Dyn., 17, 277289, doi:10.1007/s003820000118.

    • Search Google Scholar
    • Export Citation
  • Xi, J., L. Zhou, R. Murtugudde, and L. Jiang, 2015: Impacts of intraseasonal SST anomalies on precipitation during Indian summer monsoon. J. Climate, 28, 45614575, doi:10.1175/JCLI-D-14-00096.1.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., B. Huang, Z.-Z. Hu, A. Kumar, C. Wen, D. Behringer, and S. Nadiga, 2011: An assessment of oceanic variability in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 25112539, doi:10.1007/s00382-010-0954-4.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuation associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1980: A quasi-stationary appearance of 30- to 40-day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225229.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhou, L., and R. Murtugudde, 2014: Impact of northward-propagating intraseasonal variability on the onset of Indian summer monsoon. J. Climate, 27, 126139, doi:10.1175/JCLI-D-13-00214.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 6 6 6

Intraseasonal Variability of SST and Precipitation in the Arabian Sea during the Indian Summer Monsoon: Impact of Ocean Mixed Layer Depth

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 2 Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland
  • | 3 Indian National Centre for Ocean Information Services, Hyderabad, Andhra Pradesh, India
Restricted access

Abstract

This study investigates sea surface temperature (SST) and precipitation variations in the eastern Arabian Sea (EAS) induced by the northward-propagating Indian summer monsoon (ISM) intraseasonal oscillations (MISOs) through analyzing satellite observations and the Climate Forecast System Reanalysis (CFSR) and performing ocean general circulation model (OGCM) experiments. MISOs in the EAS achieve the largest intensity in the developing stage (May–June) of the ISM. The MISOs induce intraseasonal SST variability primarily through surface heat flux forcing, contributed by both shortwave radiation and turbulent heat flux, and secondarily through mixed layer entrainment. The shallow mixed layer depth (MLD < 40 m) in the developing stage and decaying stage (September–October) of the ISM significantly amplifies the heat flux forcing effect on SST and causes large intraseasonal SST variability. Meanwhile, the high SST (>29°C) in the developing stage leads to enhanced response of MISO convection to SST anomaly. It means that the ocean state of the EAS region during the developing stage favors active two-way air–sea interaction and the formation of the strong first-pulse MISO event. These results provide compelling evidence for the vital role played by the ocean in the MISO mechanisms and have implications for understanding and forecasting the ISM onset. Compared to satellite observation, MISOs in CFSR data have weaker SST variability by ~50% and biased SST–precipitation relation. Reducing these biases in CFSR, which provides initial conditions of the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2), may help improve the ISM rainfall forecast.

Corresponding author address: Yuanlong Li, Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Campus Box 311, Boulder, CO 80309. E-mail: yuanlong.li@colorado.edu

Abstract

This study investigates sea surface temperature (SST) and precipitation variations in the eastern Arabian Sea (EAS) induced by the northward-propagating Indian summer monsoon (ISM) intraseasonal oscillations (MISOs) through analyzing satellite observations and the Climate Forecast System Reanalysis (CFSR) and performing ocean general circulation model (OGCM) experiments. MISOs in the EAS achieve the largest intensity in the developing stage (May–June) of the ISM. The MISOs induce intraseasonal SST variability primarily through surface heat flux forcing, contributed by both shortwave radiation and turbulent heat flux, and secondarily through mixed layer entrainment. The shallow mixed layer depth (MLD < 40 m) in the developing stage and decaying stage (September–October) of the ISM significantly amplifies the heat flux forcing effect on SST and causes large intraseasonal SST variability. Meanwhile, the high SST (>29°C) in the developing stage leads to enhanced response of MISO convection to SST anomaly. It means that the ocean state of the EAS region during the developing stage favors active two-way air–sea interaction and the formation of the strong first-pulse MISO event. These results provide compelling evidence for the vital role played by the ocean in the MISO mechanisms and have implications for understanding and forecasting the ISM onset. Compared to satellite observation, MISOs in CFSR data have weaker SST variability by ~50% and biased SST–precipitation relation. Reducing these biases in CFSR, which provides initial conditions of the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2), may help improve the ISM rainfall forecast.

Corresponding author address: Yuanlong Li, Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Campus Box 311, Boulder, CO 80309. E-mail: yuanlong.li@colorado.edu
Save