• Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 10131021, doi:10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Y. Ding, Z. Xiao, and H. Yan, 2006: The impact of water vapor transport on the summer monsoon onset and abnormal rainfall over Yunnan province in May (in Chinese). Chin. J. Atmos. Sci., 30, 2537.

    • Search Google Scholar
    • Export Citation
  • Derber, J., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 13331347, doi:10.1175/1520-0485(1989)019<1333:AGODAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fan, C., J. Wang, and J. Song, 2010: Factors influencing the climatological mixed layer depth in the South China Sea: Numerical simulations. Chin. J. Oceanol. Limnol., 28, 11121118, doi:10.1007/s00343-010-0002-6.

    • Search Google Scholar
    • Export Citation
  • Fu, X., J.-Y. Lee, B. Wang, W. Wang, and F. Vitart, 2013: Intraseasonal forecasting of the Asian summer monsoon in four operational and research models. J. Climate, 26, 41864203, doi:10.1175/JCLI-D-12-00252.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat‐induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • He, H., J. W. McGinnis, Z. Song, and M. Yanai, 1987: Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau. Mon. Wea. Rev., 115, 19661995, doi:10.1175/1520-0493(1987)115<1966:OOTASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, B. Y., Y. Xue, D. X. Zhang, A. Kumar, and M. J. McPhaden, 2010: The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J. Climate, 23, 49014925, doi:10.1175/2010JCLI3373.1.

    • Search Google Scholar
    • Export Citation
  • Jian, M., H. Luo, and Y. Qiao, 2004: Seasonal variability of atmospheric heat sources over the Asian–Australian monsoon region (in Chinese). Acta Sci. Nat. Univ. Sunyatseni, 43, 106109.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., 2011: Air–sea interactions during monsoon onset over the Bay of Bengal. Ph.D. dissertation, Lanzhou University, 136 pp.

  • Jiang, X., and J. P. Li, 2011: Influence of the annual cycle of sea surface temperature on the monsoon onset. J. Geophys. Res., 116, D10105, doi:10.1029/2010JD015236.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Yang, Y. Li, A. Kumar, X. Liu, Z. Zuo, and B. Jha, 2013a: Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP Climate Forecast System version 2. J. Climate, 26, 37083727, doi:10.1175/JCLI-D-12-00437.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Yang, Y. Li, A. Kumar, W. Wang, and Z. Gao, 2013b: Dynamical prediction of the East Asian winter monsoon by the NCEP Climate Forecast System. J. Geophys. Res. Atmos., 118, 13121328, doi:10.1002/jgrd.50193.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. P., and J. Narvekar, 2005: Seasonal variability of the mixed layer in the central Arabian Sea and its implication on nutrients and primary productivity. Deep-Sea Res. II, 52, 18481861, doi:10.1016/j.dsr2.2005.06.002.

    • Search Google Scholar
    • Export Citation
  • Lan, G., Z. Wen, and H. He, 2005: Comparison of the atmospheric heat sources obtained from ERA and those from NCEP2 and study of the variations in the nature of heating over the global atmosphere (in Chinese). Chin. J. Atmos. Sci., 29, 154163.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., and J. Chou, 1998: The qualitative theory on the dynamical equations of atmospheric motion and its applications (in Chinese). Chin. J. Atmos. Sci., 22, 348360.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., and L. Zhang, 2009: Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models. Climate Dyn., 32, 935968, doi:10.1007/s00382-008-0465-8.

    • Search Google Scholar
    • Export Citation
  • Li, K., W. Yu, T. Li, V. Murty, S. Khokiattiwong, T. Adi, and S. Budi, 2013: Structures and mechanisms of the first-branch northward-propagating intraseasonal oscillation over the tropical Indian Ocean. Climate Dyn., 40, 17071720, doi:10.1007/s00382-012-1492-z.

    • Search Google Scholar
    • Export Citation
  • Li, K., Y. Liu, Y. Yang, Z. Li, B. Liu, L. Xue, and W. Yu, 2015: Possible role of pre-monsoon sea surface warming in driving the summer monsoon onset over the Bay of Bengal. Climate Dyn., doi:10.1007/s00382-015-2867-8, in press.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. C. Chan, J. Mao, and G. Wu, 2002: The role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon. Mon. Wea. Rev., 130, 27312744, doi:10.1175/1520-0493(2002)130<2731:TROBOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7A, 157167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • Mao, J., 2002: Study on modal variation of subtropical high and its mechanism during seasonal transition. Part II: Seasonal transition index over Asian monsoon region (in Chinese). Acta Meteor. Sin., 60, 409420.

    • Search Google Scholar
    • Export Citation
  • Mao, J., and G. Wu, 2007: Interannual variability in the onset of the summer monsoon over the Eastern Bay of Bengal. Theor. Appl. Climatol., 89, 155170, doi:10.1007/s00704-006-0265-1.

    • Search Google Scholar
    • Export Citation
  • Mao, J., G. Wu, and Y. Liu, 2002: Study on modal variation of subtropical high and its mechanism during seasonal transition. Part I: Climatological features of subtropical high structure. Acta Meteor. Sin., 60, 400408.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • McPhaden, M. J., and S. P. Hayes, 1991: On the variability of winds, sea-surface temperature, and surface-layer heat-content in the western equatorial Pacific. J. Geophys. Res., 96, 33313342, doi:10.1029/90JC01726.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., Q. Zhang, Y. Yao, and X. Zhang, 2002: Seasonal variation and heat preference of the South Asia high. Adv. Atmos. Sci., 19, 821836, doi:10.1007/s00376-002-0047-3.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., and Y. Tanimoto, 2007: Role of SST over the Indian Ocean in influencing the intraseasonal variability of the Indian summer monsoon. J. Meteor. Soc. Japan, 85, 349358, doi:10.2151/jmsj.85.349.

    • Search Google Scholar
    • Export Citation
  • Roxy, M., Y. Tanimoto, B. Preethi, P. Terray, and R. Krishnan, 2013: Intraseasonal SST–precipitation relationship and its spatial variability over the tropical summer monsoon region. Climate Dyn., 41, 4561, doi:10.1007/s00382-012-1547-1.

    • Search Google Scholar
    • Export Citation
  • Tamura, T., and T. Koike, 2010: Role of convective heating in the seasonal evolution of the Asian summer monsoon. J. Geophys. Res., 115, D14103, doi:10.1029/2009JD013418.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and Y. Qian, 2000: Diagnostic study of apparent heat sources and moisture sinks in the South China Sea and its adjacent areas during the onset of 1998 SCS monsoon. Adv. Atmos. Sci., 17, 285298, doi:10.1007/s00376-000-0010-0.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of the tropical atmosphere to local, steady forcing. Mon. Wea. Rev., 100, 518541, doi:10.1175/1520-0493(1972)100<0518:ROTTAT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magana, T. Palmer, J. Shukla, R. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, doi:10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Wu, G., and Y. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913927, doi:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, G., Y. Guan, T. Wang, Y. Liu, J. Yan, and J. Mao, 2010: Vortex genesis over the Bay of Bengal in spring and its role in the onset of the Asian summer monsoon (in Chinese). Sci. China Earth Sci., 40, 14591467.

    • Search Google Scholar
    • Export Citation
  • Wu, G., Y. Guan, Y. Liu, J. Yan, and J. Mao, 2012: Air–sea interaction and formation of the Asian summer monsoon onset vortex over the Bay of Bengal. Climate Dyn., 38, 261279, doi:10.1007/s00382-010-0978-9.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xing, N., J. P. Li, and Y. Li, 2014: Response of the tropical atmosphere to isolated equatorial asymmetric heating (in Chinese). Chin. J. Atmos. Sci., 38, 11471158.

    • Search Google Scholar
    • Export Citation
  • Yan, H., Z. Xiao, and L. Wang, 2003: Activities of Bay of Bengal monsoon and beginning date of rain season in Yunnan (in Chinese). Plateau Meteor., 22, 624630.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and T. Tomita, 1998: Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. J. Climate, 11, 463482, doi:10.1175/1520-0442(1998)011<0463:SAIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., C. F. Li, and Z. S. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319351.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air–Sea Fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux project Tech. Rep. OA-2008-01, 64 pp. [Available online at http://oaflux.whoi.edu/pdfs/OAFlux_TechReport_3rd_release.pdf.]

  • Yu, W., J. Shi, and L. Liu, 2012: The onset of the monsoon over the Bay of Bengal: The observed common features for 2008–2011. Atmos. Oceanic Sci. Lett., 5, 314318, doi:10.1080/16742834.2012.11447009.

    • Search Google Scholar
    • Export Citation
  • Zhan, R., J. P. Li, and J. He, 2005: Statistical characteristics of the double ridges of subtropical high in the Northern Hemisphere. Chin. Sci. Bull., 50, 23362341, doi:10.1007/BF03183745.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., and R. Murtugudde, 2014: Impact of northward-propagating intraseasonal variability on the onset of Indian summer monsoon. J. Climate, 27, 126139, doi:10.1175/JCLI-D-13-00214.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 119 88 7
PDF Downloads 72 48 4

Local Oceanic Precursors for the Summer Monsoon Onset over the Bay of Bengal and the Underlying Processes

View More View Less
  • 1 College of Global Change and Earth System Science, Beijing Normal University, Beijing Meteorological Observatory, and Joint Center for Global Change Studies, Beijing, China
  • | 2 College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China
  • | 3 Institute of Plateau Meteorology, China Meteorological Administration, Chengdu, Sichuan, China
  • | 4 College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Local sea surface temperature (SST) plays an important role in the onset of the Bay of Bengal (BoB) summer monsoon (BoBSM). Previous study indicated that the meridionally warmest SST axis (WSSTA) appears in mid-April in the central BoB, which may be a precursor for the BoBSM onset. In this study, it is found that a warm but not the meridionally warmest center, which is defined as the secondary WSSTA (SWSSTA), occurs in early April in the central BoB, leading the BoBSM onset by five pentads. Dates of the SWSSTA occurrence are significantly positively correlated with dates of the WSSTA occurrence in the central BoB and the BoBSM onset on an interannual time scale. The SWSSTA is an earlier precursor for the BoBSM onset. The formation of the oceanic precursor and its impact on the BoBSM onset are as follows. Before the BoBSM onset, resulting from more surface heat input and shallower mixed layer affected by the low-level anticyclone and subtropical high in the central BoB, local SST shows the most rapid increase. Meanwhile, the situation is adverse to the rapid increase of SST in the equatorial BoB. For this reason, the SWSSTA occurs, and the WSSTA subsequently appears in the central BoB. The WSSTA in turn enhances local convection, eliminates the low-level anticyclone, and moves the subtropical high outward away from the BoB by inducing atmospheric instability, thus developing a heating center. Convectional heating further strengthens southwesterlies in the BoB by exciting mixed planetary–gravity waves, resulting in the BoBSM onset.

Denotes Open Access content.

Corresponding author address: Dr. Jianping Li, Professor, College of Global Change and Earth System Science, Beijing Normal University, 19 XinJieKouWai St., Beijing 100875, China. E-mail: ljp@bnu.edu.cn

Abstract

Local sea surface temperature (SST) plays an important role in the onset of the Bay of Bengal (BoB) summer monsoon (BoBSM). Previous study indicated that the meridionally warmest SST axis (WSSTA) appears in mid-April in the central BoB, which may be a precursor for the BoBSM onset. In this study, it is found that a warm but not the meridionally warmest center, which is defined as the secondary WSSTA (SWSSTA), occurs in early April in the central BoB, leading the BoBSM onset by five pentads. Dates of the SWSSTA occurrence are significantly positively correlated with dates of the WSSTA occurrence in the central BoB and the BoBSM onset on an interannual time scale. The SWSSTA is an earlier precursor for the BoBSM onset. The formation of the oceanic precursor and its impact on the BoBSM onset are as follows. Before the BoBSM onset, resulting from more surface heat input and shallower mixed layer affected by the low-level anticyclone and subtropical high in the central BoB, local SST shows the most rapid increase. Meanwhile, the situation is adverse to the rapid increase of SST in the equatorial BoB. For this reason, the SWSSTA occurs, and the WSSTA subsequently appears in the central BoB. The WSSTA in turn enhances local convection, eliminates the low-level anticyclone, and moves the subtropical high outward away from the BoB by inducing atmospheric instability, thus developing a heating center. Convectional heating further strengthens southwesterlies in the BoB by exciting mixed planetary–gravity waves, resulting in the BoBSM onset.

Denotes Open Access content.

Corresponding author address: Dr. Jianping Li, Professor, College of Global Change and Earth System Science, Beijing Normal University, 19 XinJieKouWai St., Beijing 100875, China. E-mail: ljp@bnu.edu.cn
Save