• Agustí-Panareda, A., and Coauthors, 2010: The ECMWF Re-Analysis for the AMMA observational campaign. Quart. J. Roy. Meteor. Soc., 136, 14571472, doi:10.1002/qj.662.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2006: Coupled model simulations of the West African monsoon system : Twentieth- and twenty-first-century simulations. J. Climate, 19, 36813704, doi:10.1175/JCLI3814.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, doi:10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., and K. H. Cook, 2007: Dynamics of the West African monsoon jump. J. Climate, 20, 52645284, doi:10.1175/2007JCLI1533.1.

  • Hodges, K. I., and C. D. Thorncroft, 1997: Distribution and statistics of African mesoscale convective weather systems based on the ISCCP Meteosat imagery. Mon. Wea. Rev., 125, 28212837, doi:10.1175/1520-0493(1997)125<2821:DASOAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2014: Convection over tropical Africa and the east Atlantic during the West African monsoon: Regional and diurnal variability. J. Climate, 27, 41594188, doi:10.1175/JCLI-D-13-00449.1.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1993: Mesoscale convective complexes in Africa. Mon. Wea. Rev., 121, 22542263, doi:10.1175/1520-0493(1993)121<2254:MCCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., R. Carbone, V. Levizzani, and J. Tuttle, 2008: The propagation and diurnal cycles of deep convection in northern tropical Africa. Quart. J. Roy. Meteor. Soc., 134, 93109, doi:10.1002/qj.194.

    • Search Google Scholar
    • Export Citation
  • Le Barbé, L., and T. Lebel, 1997: Rainfall climatology of the HAPEX-Sahel region during the years 1950–1990. J. Hydrol., 188–189, 4373, doi:10.1016/S0022-1694(96)03154-X.

    • Search Google Scholar
    • Export Citation
  • Lebel, T., and Coauthors, 2010: The AMMA field campaigns: Multiscale and multidisciplinary observations in the West African region. Quart. J. Roy. Meteor. Soc., 136, 833, doi:10.1002/qj.486.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., and H. Laurent, 2001: Life cycle of Sahelian mesoscale convective cloud systems. Quart. J. Roy. Meteor. Soc., 127, 377406, doi:10.1002/qj.49712757208.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., H. Laurent, and T. Lebel, 2002: Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41, 10811092, doi:10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., 2004: Interannual, monthly, and regional variability in the wet season diurnal cycle of precipitation in sub-Saharan Africa. J. Climate, 17, 24412453, doi:10.1175/1520-0442(2004)017<2441:IMARVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Neupane, N., and K. H. Cook, 2013: A nonlinear response of Sahel rainfall to Atlantic warming. J. Climate, 26, 70807096, doi:10.1175/JCLI-D-12-00475.1.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S. D., and K. I. Mohr, 2010: An analysis of the environments of intense convective systems in West Africa in 2003. Mon. Wea. Rev., 138, 37213739, doi:10.1175/2010MWR3321.1.

    • Search Google Scholar
    • Export Citation
  • Pfeifroth, U., J. Trentmann, A. H. Fink, and B. Ahrens, 2016: Evaluating satellite-based diurnal cycles of precipitation in the African tropics. J. Appl. Meteor. Climatol., 55, 2339, doi:10.1175/JAMC-D-15-0065.1.

    • Search Google Scholar
    • Export Citation
  • Pu, B., and K. H. Cook, 2012: Role of the West African westerly jet in Sahel rainfall variations. J. Climate, 25, 28802896, doi:10.1175/JCLI-D-11-00394.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Shinoda, M., T. Okatani, and M. Saloum, 1999: Diurnal variations of rainfall over Niger in the West African Sahel: A comparison between wet and drought years. Int. J. Climatol., 19, 8194, doi:10.1002/(SICI)1097-0088(199901)19:1<81::AID-JOC350>3.0.CO;2-F.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite–based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., and Coauthors, 2010: Intercomparison and analyses of the climatology of the West African monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment. Climate Dyn., 35, 327, doi:10.1007/s00382-010-0778-2.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., and K. H. Cook, 2014: West African monsoon demise: Climatology, interannual variations, and relationship to seasonal rainfall. J. Geophys. Res. Atmos., 119, 10 17510 193, doi:10.1002/2014JD022043.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., K. H. Cook, and E. K. Vizy, 2016: The diurnal cycle of warm season rainfall over West Africa. Part II: Convection-permitting simulations. J. Climate, 29, 84398454, doi:10.1175/JCLI-D-15-0875.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 395 334 74
PDF Downloads 164 108 8

The Diurnal Cycle of Warm Season Rainfall over West Africa. Part I: Observational Analysis

View More View Less
  • 1 Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study provides an improved understanding of the diurnal cycle of warm season (June–September) rainfall over West Africa, including its underlying physical processes. Rainfall from the Tropical Rainfall Measuring Mission and atmospheric dynamics fields from reanalyses are used to evaluate the 1998–2013 climatology and a case study for 2006.

In both the climatology and the 2006 case study, most regions of West Africa are shown to have a single diurnal peak of rainfall either in the afternoon or at night. Averaging over West Africa produces a diurnal cycle with two peaks, but this type of diurnal cycle is quite atypical on smaller space scales. Rainfall systems are usually generated in the afternoon and propagate westward, lasting into the night. Afternoon rainfall peaks are associated with an unstable lower troposphere. They occur either over topography or in regions undisturbed by nocturnal systems, allowing locally generated instability to dominate. Nocturnal rainfall peaks are associated with the westward propagation of rainfall systems and not generally with local instability. Nocturnal rainfall peaks occur most frequently about 3°–10° of longitude downstream of regions with afternoon rainfall peaks. The diurnal cycle of rainfall is closely associated with the timing of extreme rainfall events.

Current affiliation: Department of Geology and Geophysics, Yale University, New Haven, Connecticut.

Corresponding author address: Gang Zhang, Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511. E-mail: gz@utexas.edu

This article is included in the In Honor of Peter J. Lamb special collection.

Abstract

This study provides an improved understanding of the diurnal cycle of warm season (June–September) rainfall over West Africa, including its underlying physical processes. Rainfall from the Tropical Rainfall Measuring Mission and atmospheric dynamics fields from reanalyses are used to evaluate the 1998–2013 climatology and a case study for 2006.

In both the climatology and the 2006 case study, most regions of West Africa are shown to have a single diurnal peak of rainfall either in the afternoon or at night. Averaging over West Africa produces a diurnal cycle with two peaks, but this type of diurnal cycle is quite atypical on smaller space scales. Rainfall systems are usually generated in the afternoon and propagate westward, lasting into the night. Afternoon rainfall peaks are associated with an unstable lower troposphere. They occur either over topography or in regions undisturbed by nocturnal systems, allowing locally generated instability to dominate. Nocturnal rainfall peaks are associated with the westward propagation of rainfall systems and not generally with local instability. Nocturnal rainfall peaks occur most frequently about 3°–10° of longitude downstream of regions with afternoon rainfall peaks. The diurnal cycle of rainfall is closely associated with the timing of extreme rainfall events.

Current affiliation: Department of Geology and Geophysics, Yale University, New Haven, Connecticut.

Corresponding author address: Gang Zhang, Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511. E-mail: gz@utexas.edu

This article is included in the In Honor of Peter J. Lamb special collection.

Save