• Ashfaq, M., C. B. Skinner, and N. S. Diffenbaugh, 2011: Influence of SST biases on future climate change projections. Climate Dyn., 36, 13031319, doi:10.1007/s00382-010-0875-2.

    • Search Google Scholar
    • Export Citation
  • Benning, T. L., D. LaPointe, C. T. Atkinson, and P. M. Vitousek, 2002: Interactions of climate change with biological invasions and land use in the Hawaiian Islands: Modeling the fate of endemic birds using a geographic information system. Proc. Natl. Acad. Sci. USA, 99, 14 24614 249, doi:10.1073/pnas.162372399.

    • Search Google Scholar
    • Export Citation
  • Bothwell, L. D., P. C. Selmants, C. P. Giardina, and C. M. Litton, 2014: Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests. PeerJ, 2, e685, doi:10.7717/peerj.685.

    • Search Google Scholar
    • Export Citation
  • Cao, G., T. W. Giambelluca, D. E. Stevens, and T. A. Schroeder, 2007: Inversion variability in the Hawaiian regime. J. Climate, 20, 11451160, doi:10.1175/JCLI4033.1.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., and H. Chen, 2005: Interannual and interdecadal rainfall variations in the Hawaiian Islands. J. Climate, 18, 47964813, doi:10.1175/JCLI3578.1.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., A. J. Nash, and F.-Y. Porter, 1993: Diagnostic studies of two contrasting rainfall episodes in Hawaii: Dry 1981 and wet 1982. J. Climate, 6, 14571462, doi:10.1175/1520-0442(1993)006<1457:DSOTCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Cram, R. S., and H. R. Tatum, 1979: Record torrential rainstorms on the island of Hawaii, January–February 1979. Mon. Wea. Rev., 107, 16531662, doi:10.1175/1520-0493(1979)107<1653:RTROTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Duffy, D. C., and F. Kraus, 2006: Science and the art of the solvable in Hawaii’s extinction crisis. Environ. Hawaii, 16, 36.

  • Elison Timm, O., and H. F. Diaz, 2009: Synoptic-statistical approach to regional downscaling of IPCC twenty-first-century climate projections: Seasonal rainfall over the Hawaiian Islands. J. Climate, 22, 42614280, doi:10.1175/2009JCLI2833.1.

    • Search Google Scholar
    • Export Citation
  • Elison Timm, O., T. M. Takahashi, T. W. Giambelluca, and H. F. Diaz, 2013: On the relation between large-scale circulation pattern and heavy rain events over the Hawaiian Islands: Recent trends and future changes. J. Geophys. Res. Atmos., 118, 41294141, doi:10.1002/jgrd.50314.

    • Search Google Scholar
    • Export Citation
  • Elison Timm, O., T. W. Giambelluca, and H. F. Diaz, 2015: Statistical downscaling of rainfall changes in Hawai’i based on the CMIP5 global model projections. J. Geophys. Res. Atmos., 120, 92112, doi:10.1002/2014JD022059.

    • Search Google Scholar
    • Export Citation
  • Esteban, M. A., and Y. Chen, 2008: The impact of trade wind strength on precipitation over the windward side of the island of Hawaii. Mon. Wea. Rev., 136, 913928, doi:10.1175/2007MWR2059.1.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Giambelluca, T. W., H. F. Diaz, and M. S. A. Luke, 2008: Secular temperature changes in Hawai’i. Geophys. Res. Lett., 35, L12702, doi:10.1029/2008GL034377.

    • Search Google Scholar
    • Export Citation
  • Giambelluca, T. W., Q. Chen, A. G. Frazier, J. P. Price, Y.-L. Chen, P.-S. Chu, J. K. Eischeid, and D. M. Delparte, 2013: Online rainfall atlas of Hawai‘i. Bull. Amer. Meteor. Soc., 94, 313316, doi:10.1175/BAMS-D-11-00228.1.

    • Search Google Scholar
    • Export Citation
  • Giambelluca, T. W., and Coauthors, 2014: Evapotranspiration of Hawai‘i. U.S. Army Corps of Engineers Rep., 168 pp. [Available online at http://evapotranspiration.geography.hawaii.edu/assets/files/PDF/ET%20Project%20Final%20Report.pdf.]

  • Hara, M., T. Yoshikane, H. Kawase, and F. Kimura, 2008: Estimation of the impact of global warming on snow depth in Japan by the pseudo-global warming method. Hydrol. Res. Lett., 2, 6164, doi:10.3178/hrl.2.61.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hirota, N., and Y. N. Takayabu, 2013: Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3. Climate Dyn., 41, 29092920, doi:10.1007/s00382-013-1839-0.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2000: Emissions Scenarios. Cambridge University Press, 570 pp.

  • James, H. F., 1995: Prehistoric change to diversity and ecosystem dynamics on oceanic islands. Biological Diversity and Ecosystem Function on Islands, P. Vitousek, L. Loope, and H. Adsersen, Eds., Springer, 87–101.

  • Jokiel, P. L., and E. K. Brown, 2004: Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Global Change Biol., 10, 16271641, doi:10.1111/j.1365-2486.2004.00836.x.

    • Search Google Scholar
    • Export Citation
  • Kane, H., C. H. Fletcher, L. N. Frazier, and M. M. Barbee, 2015: Critical elevation levels for flooding due to sea-level rise in Hawaii. Reg. Environ. Change, 15, 16791687, doi:10.1007/s10113-014-0725-6.

    • Search Google Scholar
    • Export Citation
  • Kawase, H., T. Yoshikane, M. Hara, F. Kimura, T. Yasunari, B. Ailikun, H. Ueda, and T. Inoue, 2009: Intermodel variability of future changes in the baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res., 114, D21110, doi:10.1029/2009JD011803.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444, doi:10.1175/JCLI4066.1.

    • Search Google Scholar
    • Export Citation
  • Kimura, F., and A. Kitoh, 2007: Downscaling by pseudo global warming method. ICCAP Final Rep., RIHN Project 1-1, 4 pp. [Available online at http://www.chikyu.ac.jp/P-C09/ICCAP/ICCAP_Final_Report/2/4-climate_kimura.pdf.]

  • King, C. W., 2014: A systems approach for investigating water, energy, and food scenarios in east-central Maui. The University of Texas at Austin Rep. to the Ulupono Initiative, Jackson School of Geosciences, 65 pp.

  • Knutson, T. R., J. J. Sirutus, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364, doi:10.1038/ngeo202.

    • Search Google Scholar
    • Export Citation
  • Krushelnycky, P. D., L. L. Loope, T. W. Giambelluca, F. Starr, K. Starr, D. R. Drake, A. D. Taylor, and R. H. Robichaux, 2013: Climate associated population declines reverse recovery and threaten future of an iconic high elevation plant. Global Change Biol., 19, 911922, doi:10.1111/gcb.12111.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat released by cumulus convection. J. Atmos. Sci., 22, 4063, doi:10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 12321240, doi:10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lauer, A., and K. Hamilton, 2013: Simulating clouds with global climate models: A comparison of CMIP5 results with CMIP3 and satellite data. J. Climate, 26, 38233845, doi:10.1175/JCLI-D-12-00451.1.

    • Search Google Scholar
    • Export Citation
  • Lauer, A., C. Zhang, O. Elison Timm, Y. Wang, and K. Hamilton, 2013: Downscaling of climate change in the Hawaii region using CMIP5 results: On the choice of the forcing fields. J. Climate, 26, 10 00610 030, doi:10.1175/JCLI-D-13-00126.1.

    • Search Google Scholar
    • Export Citation
  • Leong, J.-A., and Coauthors, 2014: Hawai‘i and U.S. affiliated Pacific islands. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 537–556, doi:10.7930/J0W66HPM.

  • Lyons, S. W., 1982: Empirical orthogonal function analysis of Hawaiian rainfall. J. Appl. Meteor., 21, 17131729, doi:10.1175/1520-0450(1982)021<1713:EOFAOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDonald, J. H., 2014: Handbook of Biological Statistics. 3rd ed. Sparky House Publishing, 299 pp.

  • Mearns, L., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 13371362, doi:10.1175/BAMS-D-11-00223.1.

    • Search Google Scholar
    • Export Citation
  • Norton, C., P.-S. Chu, and T. A. Schroeder, 2011: Estimating changes in future heavy rainfall events for Oahu, Hawaii: A statistical downscaling approach. J. Geophys. Res., 116, D17110, doi:10.1029/2011JD015641.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, doi:10.1073/pnas.0907610106.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, doi:10.1002/2014RG000475.

    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. A. Klein, and P. M. Caldwell, 2015: The strength of the tropical inversion and its response to climate change in 18 CMIP5 models. Climate Dyn., 45, 375396, doi:10.1007/s00382-014-2441-9.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Romine, B. M., C. H. Fletcher, M. M. Barbee, T. R. Anderson, and L. N. Frazer, 2013: Are beach erosion rates and sea-level rise related in Hawaii? Global Planet. Change, 108, 149157, doi:10.1016/j.gloplacha.2013.06.009.

    • Search Google Scholar
    • Export Citation
  • Sakai, A. K., W. L. Wagner, and L. A. Merhoff, 2002: Patterns of endangerment in the Hawaiian flora. Syst. Biol., 51, 276302, doi:10.1080/10635150252899770.

    • Search Google Scholar
    • Export Citation
  • Sato, T., F. Kimura, and A. Kitoh, 2007: Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol., 333, 144154, doi:10.1016/j.jhydrol.2006.07.023.

    • Search Google Scholar
    • Export Citation
  • Schroeder, T. A., 1993: Climate controls. Prevailing Trade Winds: Weather and Climate in Hawaii, M. Sanderson, Ed., University of Hawai’i Press, 12–36.

  • Stevenson, S., B. Fox-Kemper, M. Jochum, R. Neale, C. Deser, and G. Meehl, 2012: Will there be a significant change to El Niño in the twenty-first century? J. Climate, 25, 21292145, doi:10.1175/JCLI-D-11-00252.1.

    • Search Google Scholar
    • Export Citation
  • Tran, N., P. Illukpitiya, J. F. Yanagida, and R. Ogoshi, 2011: Optimizing biofuel production: An economic analysis for selected biofuel feedstock production in Hawaii. Biomass Bioenergy, 35, 17561764, doi:10.1016/j.biombioe.2011.01.012.

    • Search Google Scholar
    • Export Citation
  • Trauernicht, C., E. Pichett, C. P. Giardina, C. M. Litton, S. Cordell, and A. Beavers, 2015: The contemporary scale and context of wildfire in Hawaii. Pac. Sci., 69, 427444, doi:10.2984/69.4.1.

    • Search Google Scholar
    • Export Citation
  • Tu, C.-C., and Y.-L. Chen, 2011: Favorable conditions for the development of a heavy rainfall event over Oahu during the 2006 wet period. Wea. Forecasting, 26, 280300, doi:10.1175/2010WAF2222449.1.

    • Search Google Scholar
    • Export Citation
  • Wang, G., D. Dommenget, and C. Frauen, 2015: An evaluation of the CMIP3 and CMIP5 simulations in their skill of simulating the spatial structure of SST variability. Climate Dyn., 44, 95114, doi:10.1007/s00382-014-2154-0.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, A. Lauer, and K. Hamilton, 2012a: Configuration and evaluation of the WRF Model for the study of Hawaiian regional climate. Mon. Wea. Rev., 140, 32593277, doi:10.1175/MWR-D-11-00260.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, A. Lauer, K. Hamilton, and F. Xie, 2012b: Cloud base and top heights in the Hawaiian region determined with satellite and ground-based measurements. Geophys. Res. Lett., 39, L15706, doi:10.1029/2012GL052355.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, K. Hamilton, and A. Lauer, 2016: Dynamical downscaling of the climate for the Hawaiian Islands. Part I: Present day. J. Climate, 29, 30273048, doi:10.1175/JCLI-D-15-0432.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., T. Shinoda, J.-L. Lin, and G. N. Kiladis, 2011: Sea surface temperature biases under the stratus cloud deck in the southeast Pacific Ocean in 19 IPCC AR4 coupled general circulation models. J. Climate, 24, 41394164, doi:10.1175/2011JCLI4172.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 697 458 83
PDF Downloads 549 347 33

Dynamical Downscaling of the Climate for the Hawaiian Islands. Part II: Projection for the Late Twenty-First Century

View More View Less
  • 1 International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A 20-yr simulation with a fine-resolution regional atmospheric model for projected late twenty-first-century conditions in Hawaii is presented. The pseudo-global-warming method is employed, and the boundary conditions are based on a multimodel mean of projections made with global coupled models run with a moderate greenhouse gas emissions scenario. Results show that surface air temperature over land increases ~2°–4°C with the greatest warming at the highest topographic heights. A modest tendency for the warming to be larger on the leeward sides of the major islands is also apparent. Climatological rainfall is projected to change up to ~25% at many locations. The currently wet windward sides of the major islands will have more clouds and receive more rainfall, while the currently dry leeward sides will generally have even less clouds and rainfall. The average trade wind inversion–base height and the mean marine boundary layer cloud heights are projected to exhibit only small changes. However, the frequency of days with clearly defined trade wind inversions is predicted to increase substantially (~83% to ~91%). The extreme rainfall events are projected to increase significantly. An analysis of the model’s moisture budget in the lower troposphere shows that the increased mean rainfall on the windward sides of the islands is largely attributable to increased boundary layer moisture in the warmer climate. Rainfall changes attributable to mean low-level circulation changes are modest in comparison.

Current affiliation: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany.

Corresponding author address: Dr. Yuqing Wang, IPRC/SOEST, POST Bldg., Room 404A, 1680 East-West Road, Honolulu, HI 96822. E-mail: yuqing@hawaii.edu

Abstract

A 20-yr simulation with a fine-resolution regional atmospheric model for projected late twenty-first-century conditions in Hawaii is presented. The pseudo-global-warming method is employed, and the boundary conditions are based on a multimodel mean of projections made with global coupled models run with a moderate greenhouse gas emissions scenario. Results show that surface air temperature over land increases ~2°–4°C with the greatest warming at the highest topographic heights. A modest tendency for the warming to be larger on the leeward sides of the major islands is also apparent. Climatological rainfall is projected to change up to ~25% at many locations. The currently wet windward sides of the major islands will have more clouds and receive more rainfall, while the currently dry leeward sides will generally have even less clouds and rainfall. The average trade wind inversion–base height and the mean marine boundary layer cloud heights are projected to exhibit only small changes. However, the frequency of days with clearly defined trade wind inversions is predicted to increase substantially (~83% to ~91%). The extreme rainfall events are projected to increase significantly. An analysis of the model’s moisture budget in the lower troposphere shows that the increased mean rainfall on the windward sides of the islands is largely attributable to increased boundary layer moisture in the warmer climate. Rainfall changes attributable to mean low-level circulation changes are modest in comparison.

Current affiliation: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany.

Corresponding author address: Dr. Yuqing Wang, IPRC/SOEST, POST Bldg., Room 404A, 1680 East-West Road, Honolulu, HI 96822. E-mail: yuqing@hawaii.edu
Save