• Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, doi:10.1175/JCLI3937.1.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., 2009: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos. Chem. Phys., 9, 543556, doi:10.5194/acpd-8-11293-2008.

    • Search Google Scholar
    • Export Citation
  • Andrich, M. A., and J. Imberger, 2013: The effect of land clearing on rainfall and fresh water resources in Western Australia: A multi-functional sustainability analysis. Int. J. Sustain. Dev. World Ecol., 20, 549563, doi:10.1080/13504509.2013.850752.

    • Search Google Scholar
    • Export Citation
  • Bates, B. C., P. Hope, B. Ryan, I. Smith, and S. Charles, 2008: Key findings from the Indian Ocean Climate Initiative and their impact on policy development in Australia. Climatic Change, 89, 339354, doi:10.1007/s10584-007-9390-9.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1973: Ice nucleus concentrations in remote areas. J. Atmos. Sci., 30, 11531157, doi:10.1175/1520-0469(1973)030<1153:INCIRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., and D. Turvey, 1978: Sources of atmospheric particles over Australia. Atmos. Environ., 12, 16431655, doi:10.1016/0004-6981(78)90313-X.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., S. Soubeyrand, and C. Morris, 2015: Persistent after-effects of heavy rain on concentrations of ice nuclei and rainfall suggest a biological cause. Atmos. Chem. Phys., 15, 23132326, doi:10.5194/acp-15-2313-2015.

    • Search Google Scholar
    • Export Citation
  • BOM, 2015: About climate data: Daily rainfall. Bureau of Meteorology, data accessed 27 October 2015. [Available online at http://www.bom.gov.au/climate/cdo/about/about-rain-data.shtml.]

  • Bradshaw, C. J. A., 2012: Little left to lose: Deforestation and forest degradation in Australia since European colonization. J. Plant Ecol., 5, 109120, doi:10.1093/jpe/rtr038.

    • Search Google Scholar
    • Export Citation
  • Colarco, P., A. Da Silva, M. Chin, and T. Diehl, 2010: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res., 115, D14207, doi:10.1029/2009JD012820.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2014: Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci., 7, 583587, doi:10.1038/ngeo2201.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Fersch, B., and H. Kunstmann, 2014: Atmospheric and terrestrial water budgets: Sensitivity and performance of configurations and global driving data for long term continental scale WRF simulations. Climate Dyn., 42, 23672396, doi:10.1007/s00382-013-1915-5.

    • Search Google Scholar
    • Export Citation
  • Gallagher, M. W., E. Nemitz, J. R. Dorsey, D. Fowler, M. A. Sutton, M. Flynn, and J. H. Duyzer, 2002: Measurements and parameterizations of small aerosol deposition velocities to grassland, arable crops, and forest: Influence of surface roughness length on deposition. J. Geophys. Res., 107, 4154, doi:10.1029/2001JD000817.

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106 (D17), 20 25520 273, doi:10.1029/2000JD000053.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2011: Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative quasi equilibrium. Part II: Double-moment microphysics. J. Climate, 24, 18971912, doi:10.1175/2010JCLI3647.1.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Junkermann, W., and J. M. Hacker, 2015: Ultrafine particles over eastern Australia: An airborne survey. Tellus, 67B, 25308, doi:10.3402/tellusb.v67.25308.

    • Search Google Scholar
    • Export Citation
  • Junkermann, W., J. M. Hacker, T. Lyons, and U. Nair, 2009: Land use change suppresses precipitation. Atmos. Chem. Phys., 9, 65316539, doi:10.5194/acpd-9-11481-2009.

    • Search Google Scholar
    • Export Citation
  • Kala, J., T. Lyons, and U. Nair, 2011: Numerical simulations of the impacts of land-cover change on cold fronts in south-west Western Australia. Bound.-Layer Meteor., 138, 121138, doi:10.1007/s10546-010-9547-3.

    • Search Google Scholar
    • Export Citation
  • Kamilli, K. A., J. Ofner, B. Lendl, P. Schmitt-Kopplin, and A. Held, 2015: New particle formation above a simulated salt lake in aerosol chamber experiments. Environ. Chem., 12, 489503, doi:10.1071/EN14225.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 2014: Climate change: Human-induced rainfall changes. Nat. Geosci., 7, 551552, doi:10.1038/ngeo2207.

  • Klein, C., D. Heinzeller, J. Bliefernicht, and H. Kunstmann, 2015: Variability of West African monsoon patterns generated by a WRF multi-physics ensemble. Climate Dyn., 45, 27332755, doi:10.1007/s00382-015-2505-5.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., and G. Feingold, 2013: Aerosol effects on the cloud-field properties of tropical convective clouds. Atmos. Chem. Phys., 13, 67136726, doi:10.5194/acp-13-6713-2013.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, doi:10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Noble, E., L. Druyan, and M. Fulakeza, 2014: The sensitivity of WRF daily summertime simulations over West Africa to alternative parameterizations. Part I: African wave circulation. Mon. Wea. Rev., 142, 15881608, doi:10.1175/MWR-D-13-00194.1.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., A. Gobiet, M. Suklitsch, H. Truhetz, N. K. Awan, K. Keuler, and G. Georgievski, 2013: Added value of convection permitting seasonal simulations. Climate Dyn., 41, 26552677, doi:10.1007/s00382-013-1744-6.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., D. Gong, J. Fan, L. R. Leung, R. Bennartz, D. Chen, and W. Wang, 2009: Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res., 114, D00K02, doi:10.1029/2008JD011575.

    • Search Google Scholar
    • Export Citation
  • Ruprecht, J., and N. Schofield, 1991: Effects of partial deforestation on hydrology and salinity in high salt storage landscapes. II. Strip, soils and parkland clearing. J. Hydrol., 129, 3955, doi:10.1016/0022-1694(91)90043-H.

    • Search Google Scholar
    • Export Citation
  • Saunders, D., 1989: Changes in the avifauna of a region, district and remnant as a result of fragmentation of native vegetation: The wheatbelt of western Australia. A case study. Biol. Conserv., 50, 99135, doi:10.1016/0006-3207(89)90007-4.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., C. Köhler, and K. D. Beheng, 2012: Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos. Chem. Phys., 12, 709725, doi:10.5194/acp-12-709-2012.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Rep. NCAR/TN-475+STR, 113 pp., doi:10.5065/D6DZ069T.

  • Tao, W. K., J. P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, doi:10.1175/JAS-D-13-0305.1.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci., 68, 699718, doi:10.1175/2010JAS3603.1.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 36643673, doi:10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, doi:10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willmott, C., and K. Matsuura, 2014: University of Delaware air temperature and precipitation long term monthly means V3.01. Accessed 2 November 2015. [Available online at http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 200 134 19
PDF Downloads 115 68 11

Anthropogenic Aerosol Emissions and Rainfall Decline in Southwestern Australia: Coincidence or Causality?

View More View Less
  • 1 Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
  • | 2 Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, and Institute of Geography, University of Augsburg, Augsburg, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

It is commonly understood that the observed decline in precipitation in southwestern Australia during the twentieth century is caused by anthropogenic factors. Candidates therefore are changes to large-scale atmospheric circulations due to global warming, extensive deforestation, and anthropogenic aerosol emissions—all of which are effective on different spatial and temporal scales. This contribution focuses on the role of rapidly rising aerosol emissions from anthropogenic sources in southwestern Australia around 1970. An analysis of historical long-term rainfall data of the Bureau of Meteorology shows that southwestern Australia as a whole experienced a gradual decline in precipitation over the twentieth century. However, on smaller scales and for the particular example of the Perth catchment area, a sudden drop in precipitation around 1970 is apparent. Modeling experiments at a convection-resolving resolution of 3.3 km using the Weather Research and Forecasting (WRF) Model version 3.6.1 with the aerosol-aware Thompson–Eidhammer microphysics scheme are conducted for the period 1970–74. A comparison of four runs with different prescribed aerosol emissions and without aerosol effects demonstrates that tripling the pre-1960s atmospheric CCN and IN concentrations can suppress precipitation by 2%–9%, depending on the area and the season. This suggests that a combination of all three processes is required to account for the gradual decline in rainfall seen for greater southwestern Australia and for the sudden drop observed in areas along the west coast in the 1970s: changing atmospheric circulations, deforestation, and anthropogenic aerosol emissions.

Denotes Open Access content.

Corresponding author address: Dominikus Heinzeller, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany. E-mail: heinzeller@kit.edu

Abstract

It is commonly understood that the observed decline in precipitation in southwestern Australia during the twentieth century is caused by anthropogenic factors. Candidates therefore are changes to large-scale atmospheric circulations due to global warming, extensive deforestation, and anthropogenic aerosol emissions—all of which are effective on different spatial and temporal scales. This contribution focuses on the role of rapidly rising aerosol emissions from anthropogenic sources in southwestern Australia around 1970. An analysis of historical long-term rainfall data of the Bureau of Meteorology shows that southwestern Australia as a whole experienced a gradual decline in precipitation over the twentieth century. However, on smaller scales and for the particular example of the Perth catchment area, a sudden drop in precipitation around 1970 is apparent. Modeling experiments at a convection-resolving resolution of 3.3 km using the Weather Research and Forecasting (WRF) Model version 3.6.1 with the aerosol-aware Thompson–Eidhammer microphysics scheme are conducted for the period 1970–74. A comparison of four runs with different prescribed aerosol emissions and without aerosol effects demonstrates that tripling the pre-1960s atmospheric CCN and IN concentrations can suppress precipitation by 2%–9%, depending on the area and the season. This suggests that a combination of all three processes is required to account for the gradual decline in rainfall seen for greater southwestern Australia and for the sudden drop observed in areas along the west coast in the 1970s: changing atmospheric circulations, deforestation, and anthropogenic aerosol emissions.

Denotes Open Access content.

Corresponding author address: Dominikus Heinzeller, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany. E-mail: heinzeller@kit.edu
Save