• Allen, R. J., and S. C. Sherwood, 2011: The impact of natural versus anthropogenic aerosols on atmospheric circulation in the Community Atmosphere Model. Climate Dyn., 36, 19591978, doi:10.1007/s00382-010-0898-8.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., S. C. Sherwood, J. R. Norris, and C. S. Zender, 2012: The equilibrium response to idealized thermal forcings in a comprehensive GCM: Implications for recent tropical expansion. Atmos. Chem. Phys., 12, 47954816, doi:10.5194/acp-12-4795-2012.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19, 28962905, doi:10.1175/JCLI3774.1.

    • Search Google Scholar
    • Export Citation
  • Bader, J., M. Flügge, N. G. Kvamstø, M. D. S. Mesquita, and A. Voigt, 2013: Atmospheric winter response to a projected future Antarctic sea-ice reduction: A dynamical analysis. Climate Dyn., 40, 27072718, doi:10.1007/s00382-012-1507-9.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. M. Polvani, 2013: Response of the midlatitude jets and of their variability to increased greenhouse gases in CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, doi:10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., V. Ramanathan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, doi:10.1007/s00382-011-1065-6.

    • Search Google Scholar
    • Export Citation
  • Blackburn, M., and B. J. Hoskins, 2013: Context and aims of the aqua-planet experiment. J. Meteor. Soc. Japan, 91A, 115, doi:10.2151/jmsj.2013-A01.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nat. Geosci., 8, 261268, doi:10.1038/ngeo2398.

  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 571–657.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, doi:10.1175/2008JAS2657.1.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and T. Birner, 2011: Isentropic slopes, downgradient eddy fluxes, and the extratropical atmospheric circulation response to tropical tropospheric heating. J. Atmos. Sci., 68, 22922305, doi:10.1175/JAS-D-10-05025.1.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2015: Connections between clouds, radiation, and midlatitude dynamics: A review. Curr. Climate Change Rep., 1, 94102, doi:10.1007/s40641-015-0010-x.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2016: Clouds and the atmospheric circulation response to warming. J. Climate, 29, 783799, doi:10.1175/JCLI-D-15-0394.1.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., Y.-T. Hwang, D. M. W. Frierson, and D. L. Hartmann, 2012: Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett., 39, L19708, doi:10.1029/2012GL053115.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett., 41, 32443250, doi:10.1002/2014GL060043.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., D. L. Hartmann, and M. J. Webb, 2016: Mechanisms of the negative shortwave cloud feedback in middle to high latitudes. J. Climate, 29, 139157, doi:10.1175/JCLI-D-15-0327.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, doi:10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G., R. A. Plumb, and J. Lu, 2010: Sensitivities of zonal mean atmospheric circulation to SST warming in an aqua-planet model. Geophys. Res. Lett., 37, L12701, doi:10.1029/2010GL043473.

    • Search Google Scholar
    • Export Citation
  • Christensen, J., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, doi:10.1175/2009JCLI3053.1.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, doi:10.1175/JAS3753.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and S.-W. Son, 2014: Quantifying the summertime response of the austral jet stream and Hadley cell to stratospheric ozone and greenhouse gases. J. Climate, 27, 55385559, doi:10.1175/JCLI-D-13-00539.1.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273275, doi:10.1126/science.1087440.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014a: Is climate sensitivity related to dynamical sensitivity? A Southern Hemisphere perspective. Geophys. Res. Lett., 41, 534540, doi:10.1002/2013GL058466.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014b: Southern Hemisphere cloud–dynamics biases in CMIP5 models and their implications for climate projections. J. Climate, 27, 60746092, doi:10.1175/JCLI-D-14-00113.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29, 1951, doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2000: The general circulation of the atmosphere. Proc. Woods Hole Oceanographic Institute Geophysical Fluid Dynamics Program, Woods Hole, MA, WHOI. [Available online at https://www.whoi.edu/page.do?pid=13076.]

  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, doi:10.1175/BAMS-86-11-1609.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2014: Simplicity amid complexity. Science, 343, 12061207, doi:10.1126/science.1248447.

  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., A. J. Charlton, and A. A. Scaife, 2006: On the influence of stratospheric water vapor changes on the tropospheric circulation. Geophys. Res. Lett., 33, L09806, doi:10.1029/2006GL025983.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and L. M. Polvani, 2011: The interannual relationship between the latitude of the eddy-driven jet and the edge of the Hadley cell. J. Climate, 24, 563568, doi:10.1175/2010JCLI4077.1.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. S. Taschetto, D. W. J. Thompson, and M. H. England, 2011: The influence of Southern Hemisphere sea-ice extent on the latitude of the mid-latitude jet stream. Geophys. Res. Lett., 38, L15804, doi:10.1029/2011GL048056.

    • Search Google Scholar
    • Export Citation
  • Klaus, D., W. Dorn, K. Dethloff, A. Rinke, and M. Mielke, 2012: Evaluation of two cloud parameterizations and their possible adaptation to Arctic climate conditions. Atmosphere, 3, 419, doi:10.3390/atmos3030419.

    • Search Google Scholar
    • Export Citation
  • Klaus, D., K. Dethloff, W. Dorn, A. Rinke, and D. L. Wu, 2016: New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data. Geophys. Res. Lett., 43, 54505459, doi:10.1002/2015GL067530.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and D. L. Hartmann, 2007: Testing the fixed anvil temperature hypothesis in a cloud-resolving model. J. Climate, 20, 20512057, doi:10.1175/JCLI4124.1.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Langen, P. L., R. G. Graversen, and T. Mauritsen, 2012: Separation of contributions from radiative feedbacks to polar amplification on an aquaplanet. J. Climate, 25, 30103024, doi:10.1175/JCLI-D-11-00246.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and D. W. J. Thompson, 2016: Observed signatures of the barotropic and baroclinic annular modes in cloud vertical structure and cloud radiative effects. J. Climate, 29, 47234740, doi:10.1175/JCLI-D-15-0692.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., D. W. J. Thompson, and S. Bony, 2015: The influence of atmospheric cloud radiative effects on the large-scale atmospheric circulation. J. Climate, 28, 72637278, doi:10.1175/JCLI-D-14-00825.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, doi:10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Lu, J., L. Sun, Y. Wu, and G. Chen, 2014: The role of subtropical irreversible PV mixing in the zonal mean circulation response to global warming–like thermal forcing. J. Climate, 27, 22972316, doi:10.1175/JCLI-D-13-00372.1.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., R. G. Graversen, D. Klocke, P. L. Langen, B. Stevens, and L. Tomassini, 2013: Climate feedback efficiency and synergy. Climate Dyn., 41, 25392554, doi:10.1007/s00382-013-1808-7.

    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., M. M. Joshi, K. P. Shine, and A. A. Scaife, 2013: The circulation response to idealized changes in stratospheric water vapor. J. Climate, 26, 545561, doi:10.1175/JCLI-D-12-00155.1.

    • Search Google Scholar
    • Export Citation
  • Mbengue, C. O., and T. Schneider, 2013: Storm track shifts under climate change: What can be learned from large-scale dry dynamics. J. Climate, 26, 99239930, doi:10.1175/JCLI-D-13-00404.1.

    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor, 2015: Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. J. Geophys. Res. Atmos., 120, 95399554, doi:10.1002/2015JD023603.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, J. F. Scinocca, D. A. Plummer, M. Sigmond, A. I. Jonsson, and M. C. Reader, 2011: Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Climate, 24, 18501868, doi:10.1175/2010JCLI3958.1.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., B. Stevens, and S. Bony, 2015: Using aquaplanets to understand the robust responses of comprehensive climate models to forcing. Climate Dyn., 44, 19571977, doi:10.1007/s00382-014-2138-0.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations: I: The proposal. Atmos. Sci. Lett., 1, 101107, doi:10.1006/asle.2000.0022.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, doi:10.1175/2007JCLI2065.1.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., B. Medeiros, and T. Mauritsen, 2014: Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions. Climate Dyn., 43, 289303, doi:10.1007/s00382-013-1964-9.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Popke, D., B. Stevens, and A. Voigt, 2013: Climate and climate change in a radiative-convective equilibrium version of ECHAM6. J. Adv. Model. Earth Syst., 5, 114, doi:10.1029/2012MS000191.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and Coauthors, 2014: Declining aerosols in CMIP5 projections: Effects on atmospheric temperature structure and midlatitude jets. J. Climate, 27, 69606977, doi:10.1175/JCLI-D-14-00258.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., B. P. Kirtman, and R. S. Lindzen, 1999: Tropospheric water vapor and climate sensitivity. J. Atmos. Sci., 56, 16491658, doi:10.1175/1520-0469(1999)056<1649:TWVACS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and A. Voigt, 2016: What can moist thermodynamics tell us about circulation shifts in response to uniform warming? Geophys. Res. Lett., 43, 45664575, doi:10.1002/2016GL068712.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., A. Voigt, S. Kang, and J. Seo, 2015: Response of the intertropical convergence zone to zonally asymmetric subtropical surface forcings. Geophys. Res. Lett., 42, 99619969, doi:10.1002/2015GL066027.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, doi:10.1038/nature12829.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, doi:10.1175/JAS-D-13-0325.1.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., and J. M. Slingo, 1988: The response of a general-circulation model to cloud longwave radiative forcing. Part I: Introduction and initial experiments. Quart. J. Roy. Meteor. Soc., 114, 10271062, doi:10.1002/qj.49711448209.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, doi:10.1002/jame.20015.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., B. Lipat, D. Konsta, K. Grise, and L. Polvani, 2016: Midlatitude cloud shifts, their primary link to the Hadley cell, and their diverse radiative effects. Geophys. Res. Lett., 43, 45944601, doi:10.1002/2016GL068242.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 14791501, doi:10.1002/qj.2456.

    • Search Google Scholar
    • Export Citation
  • Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, doi:10.1007/s00382-013-1725-9.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapor. Nat. Geosci., 8, 102106, doi:10.1038/ngeo2345.

    • Search Google Scholar
    • Export Citation
  • Wall, C. J., and D. L. Hartmann, 2015: On the influence of poleward jet shift on shortwave cloud feedback in global climate models. J. Adv. Model. Earth Syst., 7, 20442059, doi:10.1002/2015MS000520.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 13971416, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., R. Seager, M. Ting, N. Naik, and T. A. Shaw, 2012: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part I: Model experiments and transient thermal response in the troposphere. J. Climate, 25, 28622879, doi:10.1175/JCLI-D-11-00284.1.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Yuval, J., and Y. Kaspi, 2016: Eddy activity sensitivity to changes in the vertical structure of baroclinicity. J. Atmos. Sci., 73, 17091726, doi:10.1175/JAS-D-15-0128.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608624, doi:10.1175/JCLI-D-11-00096.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26, 50075027, doi:10.1175/JCLI-D-12-00555.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 435 308 32
PDF Downloads 288 195 47

Impact of Regional Atmospheric Cloud Radiative Changes on Shifts of the Extratropical Jet Stream in Response to Global Warming

View More View Less
  • 1 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
  • | 2 Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Climate models robustly project that global warming will lead to a poleward shift of the annual-mean zonal-mean extratropical jet streams. The magnitude of such shifts remains uncertain, however, and recent work has indicated a potentially important role of cloud radiative interactions. The model spread found in realistic simulations with interactive sea surface temperatures (SSTs) is captured in aquaplanet simulations with prescribed SSTs, because of which the latter setup is adapted here to study the impact of regional atmospheric cloud radiative changes on the jet position. Simulations with two CMIP5 models and prescribed regional cloud changes show that the rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry model, although the latter is too sensitive because of its simplified treatment of diabatic processes. The 10-model CMIP5 aquaplanet ensemble of global warming exhibits correlations between jet shifts, regional temperature changes, and regional cloud changes that are consistent with the prescribed cloud simulations. This provides evidence that the atmospheric radiative forcing from tropical and midlatitude high-level cloud changes contributes to model uncertainty in future jet shifts, in addition to the surface radiative forcing from extratropical cloud changes highlighted by previous studies.

Corresponding author address: Aiko Voigt, Lamont-Doherty Earth Observatory, Columbia University, P.O. Box 1000, 61 Route 9W, Palisades, NY, 10964-1000. E-mail: aiko@ldeo.columbia.edu

Abstract

Climate models robustly project that global warming will lead to a poleward shift of the annual-mean zonal-mean extratropical jet streams. The magnitude of such shifts remains uncertain, however, and recent work has indicated a potentially important role of cloud radiative interactions. The model spread found in realistic simulations with interactive sea surface temperatures (SSTs) is captured in aquaplanet simulations with prescribed SSTs, because of which the latter setup is adapted here to study the impact of regional atmospheric cloud radiative changes on the jet position. Simulations with two CMIP5 models and prescribed regional cloud changes show that the rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry model, although the latter is too sensitive because of its simplified treatment of diabatic processes. The 10-model CMIP5 aquaplanet ensemble of global warming exhibits correlations between jet shifts, regional temperature changes, and regional cloud changes that are consistent with the prescribed cloud simulations. This provides evidence that the atmospheric radiative forcing from tropical and midlatitude high-level cloud changes contributes to model uncertainty in future jet shifts, in addition to the surface radiative forcing from extratropical cloud changes highlighted by previous studies.

Corresponding author address: Aiko Voigt, Lamont-Doherty Earth Observatory, Columbia University, P.O. Box 1000, 61 Route 9W, Palisades, NY, 10964-1000. E-mail: aiko@ldeo.columbia.edu
Save