• Adachi, Y., and Coauthors, 2013: Basic performance of a new Earth system model of the Meteorological Research Institute (MRI-ESM1). Pap. Meteor. Geophys., 64, 119, doi:10.2467/mripapers.64.1.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687720, doi:10.5194/gmd-6-687-2013.

    • Search Google Scholar
    • Export Citation
  • Bessafi, M., and M. C. Wheeler, 2006: Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638656, doi:10.1175/MWR3087.1.

    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1976: Some features of global-scale 4–5 day waves. J. Atmos. Sci., 33, 22922299, doi:10.1175/1520-0469(1976)033<2292:SFOGSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheong, H.-B., and R. Kimura, 1997: Excitation of the 5-day wave by Antarctica. J. Atmos. Sci., 54, 87102, doi:10.1175/1520-0469(1997)054<0087:EOTDWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, M., S. F. B. Tett, and C. Cooper, 2001: The internal climate variability of HadCM3, a version of the Hadley Centre Coupled Model without flux adjustments. Climate Dyn., 17, 6181, doi:10.1007/s003820000094.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Donner, L., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2009: ERA-Interim Project. Meteorological Archival and Retrieval System, accessed 29 August 2014. [Available online at http://apps.ecmwf.int/datasets/data/interim-full-daily/.]

  • Elbern, H., and P. Speth, 1993: Energy of Rossby waves as a part of global atmospheric oscillations. Tellus, 45A, 168192, doi:10.1034/j.1600-0870.1993.t01-2-00002.x.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and M. L. Salby, 1987: Transient response to localized episodic heating in the tropics. Part II: Far-field behavior. J. Atmos. Sci., 44, 499532, doi:10.1175/1520-0469(1987)044<0499:TRTLEH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, doi:10.1002/jame.20038.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1987: General circulation model simulation of the structure and energetics of atmospheric normal modes. Tellus, 39A, 435459, doi:10.1111/j.1600-0870.1987.tb00320.x.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., and D. G. Golder, 1983: Transient planetary waves simulated by GFDL spectral general circulation models. Part I: Effects of mountains. J. Atmos. Sci., 40, 941950, doi:10.1175/1520-0469(1983)040<0941:TPWSBG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47, 29092924, doi:10.1175/1520-0469(1990)047<2909:TIDOOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. C. Wheeler, 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948, doi:10.1175/2008JAS2675.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, doi:10.1175/JCLI-D-12-00541.1.

    • Search Google Scholar
    • Export Citation
  • Ji, D., and Coauthors, 2014: Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model Dev., 7, 20392064, doi:10.5194/gmd-7-2039-2014.

    • Search Google Scholar
    • Export Citation
  • Jones, C., 2000: Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J. Climate, 13, 35763587, doi:10.1175/1520-0442(2000)013<3576:OOEPEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1980: Effect of zonal flows on the free oscillations of a barotropic atmosphere. J. Atmos. Sci., 37, 917929, doi:10.1175/1520-0469(1980)037<0917:EOZFOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • King, M. J., M. C. Wheeler, and T. P. Lane, 2015: Association of convection with the 5-day Rossby–Haurwitz wave. J. Atmos. Sci., 72, 33093321, doi:10.1175/JAS-D-14-0316.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. J. Meteor. Soc. Japan, 72, 401411.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and Coauthors, 2014: Kelvin and Rossby-gravity wave packets in the lower stratosphere of some high-top CMIP5 models. J. Geophys. Res. Atmos., 119, 21562173, doi:10.1002/2013JD020797.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 2007: Large-scale, free Rossby waves in the atmosphere—an update. Tellus, 59A, 571590, doi:10.1111/j.1600-0870.2007.00257.x.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. Julian, 1972a: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. Julian, 1972b: Further evidence of global-scale, 5-day pressure waves. J. Atmos. Sci., 29, 14641469, doi:10.1175/1520-0469(1972)029<1464:FEOGSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., and K. Hamilton, 1993: Middle atmospheric traveling waves forced by latent and convective heating. J. Atmos. Sci., 50, 21802200, doi:10.1175/1520-0469(1993)050<2180:MATWFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, G., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, doi:10.5194/gmd-4-723-2011.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, Y., and T. Hirooka, 1999: A numerical experiment of excitation of the 5-day wave by a GCM. J. Atmos. Sci., 56, 16981707, doi:10.1175/1520-0469(1999)056<1698:ANEOEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Potter, S. F., G. K. Vallis, and J. L. Mitchell, 2014: Spontaneous superrotation and the role of Kelvin waves in an idealized dry GCM. J. Atmos. Sci., 71, 596613, doi:10.1175/JAS-D-13-0150.1.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L., M. Collier, Y. Feng, H. Gordon, S. O’Farrell, I. Smith, and J. Syktus, 2010: Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. Int. J. Climatol., 30, 10671088, doi:10.1002/joc.1952.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, T. T., and Coauthors, 2012: MIROC4h—A new high-resolution atmosphere-ocean coupled general circulation model. J. Meteor. Soc. Japan, 90, 325359, doi:10.2151/jmsj.2012-301.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1984: Survey of planetary-scale travelling waves: The state of theory and observations. Rev. Geophys., 22, 209236, doi:10.1029/RG022i002p00209.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44, 458498, doi:10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384, doi:10.1175/2011JCLI4104.1.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., P. T. Haertel, and G. N. Kiladis, 2010: An analysis of convectively coupled Kelvin waves in 20 WCRP CMIP3 global coupled climate models. J. Climate, 23, 30313056, doi:10.1175/2009JCLI3422.1.

    • Search Google Scholar
    • Export Citation
  • TRMM, 2011: TRMM (TMPA) Rainfall estimate L3 3 hour 0.25 degree × 0.25 degree, version 7. NASA Goddard Earth Sciences Data and Information Services Center, accessed 30 May 2014. [Available online at http://disc.gsfc.nasa.gov/datacollection/TRMM_3B42_7.html.]

  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Volodin, E., N. Dianskii, and A. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv., Atmos. Oceanic Phys., 46, 414431, doi:10.1134/S000143381004002X.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211224, doi:10.1016/S0021-9991(05)80016-6.

    • Search Google Scholar
    • Export Citation
  • Xin, X.-G., T.-W. Wu, and J. Zhang, 2013: Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center. Adv. Climate Change Res., 4, 4149, doi:10.3724/SP.J.1248.2013.00041.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. Mapes, 2012: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part I: Space–time spectral analyses. J. Atmos. Sci., 69, 316, doi:10.1175/JAS-D-11-033.1.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhou, T., F. Song, and X. Chen, 2013: Historical evolution of global and regional surface air temperature simulated by FGOALS-s2 and FGOALS-g2: How reliable are the model results? Adv. Atmos. Sci., 30, 638657, doi:10.1007/s00376-013-2205-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 67 1
PDF Downloads 80 61 9

5-Day-Wave Interactions with Tropical Precipitation in CMIP5 Models

View More View Less
  • 1 School of Earth Sciences, and ARC Centre of Excellence for Climate System Science, University of Melbourne, Melbourne, Victoria, Australia
  • | 2 Bureau of Meteorology, Melbourne, Victoria, Australia
  • | 3 School of Earth Sciences, and ARC Centre of Excellence for Climate System Science, University of Melbourne, Melbourne, Victoria, Australia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The 5-day Rossby–Haurwitz wave is unlike other large-scale wave modes that interact with tropical rainfall in that associated rainfall presents as a modulation of localized areas of rainfall instead of propagating with the wave. This form of wave-modulated convective organization in climate models has received little attention. This study investigates the simulation of interactions between the 5-day wave and tropical convection in 30 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and compares these with the interaction diagnosed from ERA-Interim and TRMM precipitation data. Models simulate the dry dynamics of the 5-day wave well, with realistic coherences between upper- and lower-tropospheric winds, as well as magnitudes and geographic distribution of wave wind anomalies being close to observations. The models consistently display significant coherences between 5-day-wave zonal winds and precipitation but perform less well at simulating the spatial distribution and magnitude of precipitation anomalies. For example, a third of the models do not reproduce significant observed anomalies near the Andes, and the best-performing model simulates only 38% of the observed variance over the tropical Andes and 24% of the observed variance over the Gulf of Guinea. Models with higher resolution perform better in simulating the magnitude of the Andean rainfall anomalies, but there is no similar relationship over the Gulf of Guinea. The evidence therefore suggests that the simulated interaction is mostly one way only, with the wave dynamics forcing the precipitation variations on the 5-day time scale.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0190.s1.

Corresponding author address: Malcolm King, School of Earth Sciences, University of Melbourne, Elgin St. and Swanston St., Melbourne VIC 3010, Australia. E-mail: malcolmk@student.unimelb.edu.au

Abstract

The 5-day Rossby–Haurwitz wave is unlike other large-scale wave modes that interact with tropical rainfall in that associated rainfall presents as a modulation of localized areas of rainfall instead of propagating with the wave. This form of wave-modulated convective organization in climate models has received little attention. This study investigates the simulation of interactions between the 5-day wave and tropical convection in 30 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and compares these with the interaction diagnosed from ERA-Interim and TRMM precipitation data. Models simulate the dry dynamics of the 5-day wave well, with realistic coherences between upper- and lower-tropospheric winds, as well as magnitudes and geographic distribution of wave wind anomalies being close to observations. The models consistently display significant coherences between 5-day-wave zonal winds and precipitation but perform less well at simulating the spatial distribution and magnitude of precipitation anomalies. For example, a third of the models do not reproduce significant observed anomalies near the Andes, and the best-performing model simulates only 38% of the observed variance over the tropical Andes and 24% of the observed variance over the Gulf of Guinea. Models with higher resolution perform better in simulating the magnitude of the Andean rainfall anomalies, but there is no similar relationship over the Gulf of Guinea. The evidence therefore suggests that the simulated interaction is mostly one way only, with the wave dynamics forcing the precipitation variations on the 5-day time scale.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0190.s1.

Corresponding author address: Malcolm King, School of Earth Sciences, University of Melbourne, Elgin St. and Swanston St., Melbourne VIC 3010, Australia. E-mail: malcolmk@student.unimelb.edu.au

Supplementary Materials

    • Supplemental Materials (PDF 12.84 MB)
Save