• Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res., 105, 68376844, doi:10.1029/1999JD901161.

    • Search Google Scholar
    • Export Citation
  • Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño-like response to volcanic forcing. Nature, 426, 274278, doi:10.1038/nature02101.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., and A. H. Woodcock, 1980: The production, concentration and vertical distribution of the sea-salt aerosols. Ann. N. Y. Acad. Sci., 338, 330347, doi:10.1111/j.1749-6632.1980.tb17130.x.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, doi:10.1038/nclimate2743.

  • Carslaw, K. S., and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 6771, doi:10.1038/nature12674.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., S. R. Owens, and J. Zhou, 2006: An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res., 111, D06202, doi:10.1029/2005JD006565.

    • Search Google Scholar
    • Export Citation
  • Cobb, K. M., C. D. Charles, H. Cheng, and R. L. Edwards, 2003: El Niño–Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424, 271276, doi:10.1038/nature01779.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Geever, M., C. D. O’Dowd, S. van Ekeren, R. Flanagan, D. E. Nilsson, G. de Leeuw, and Ü. Rannik, 2005: Submicron sea spray fluxes. Geophys. Res. Lett., 32, L15810, doi:10.1029/2005GL023081.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., 2013: Technical note: Estimating aerosol effects on cloud radiative forcing. Atmos. Chem. Phys., 13, 99719974, doi:10.5194/acp-13-9971-2013.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and R. A. Zaveri, 2007: Parameterization of optical properties for hydrated internally mixed aerosol. J. Geophys. Res., 112, D10201, doi:10.1029/2006JD007927.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and Coauthors, 2016: Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability. Proc. Natl. Acad. Sci. USA, 113, 58045811, doi:10.1073/pnas.1514036113.

    • Search Google Scholar
    • Export Citation
  • Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38, 513543, doi:10.1029/1999RG000078.

    • Search Google Scholar
    • Export Citation
  • Haywood, J., V. Ramaswamy, and B. J. Soden, 1999: Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans. Science, 283, 12991303, doi:10.1126/science.283.5406.1299.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jones, A., J. M. Haywood, and O. Boucher, 2007: Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model. J. Geophys. Res., 112, D20211, doi:10.1029/2007JD008688.

    • Search Google Scholar
    • Export Citation
  • Korhonen, H., K. S. Carslaw, P. M. Forster, S. Mikkonen, N. D. Gordon, and H. Kokkola, 2010: Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds. Geophys. Res. Lett., 37, L02805, doi:10.1029/2009GL041320.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709739, doi:10.5194/gmd-5-709-2012.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715737, doi:10.5194/acp-5-715-2005.

    • Search Google Scholar
    • Export Citation
  • Maher, N., S. McGregor, M. H. England, and A. S. Gupta, 2015: Effects of volcanism on tropical variability. Geophys. Res. Lett., 42, 60246033, doi:10.1002/2015GL064751.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., M. A. Cane, S. E. Zebiak, and A. Clement, 2005: Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J. Climate, 18, 447456, doi:10.1175/JCLI-3276.1.

    • Search Google Scholar
    • Export Citation
  • Mårtensson, E. M., E. D. Nilsson, G. de Leeuw, L. H. Cohen, and H.-C. Hansson, 2003: Laboratory simulations and parameterization of the primary marine aerosol production. J. Geophys. Res., 108, 4297, doi:10.1029/2002JD002263.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., and A. Timmermann, 2011: The effect of explosive tropical volcanism on ENSO. J. Climate, 24, 21782191, doi:10.1175/2010JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, and O. Timm, 2010: A unified proxy for ENSO and PDO variability since 1650. Climate Past, 6, 117, doi:10.5194/cp-6-1-2010.

    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., D. E. Spiel, and K. L. Davidson, 1986: A model of marine aerosol generation via whitecaps and wave disruption. Oceanic Whitecaps, E. Monahan and G. M. Niocaill, Eds., D. Reidel, 167–174.

  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Mulcahy, J. P., C. D. O’Dowd, S. G. Jennings, and D. Ceburnis, 2008: Significant enhancement of aerosol optical depth in marine air under high wind conditions. Geophys. Res. Lett., 35, L16810, doi:10.1029/2008GL034303.

    • Search Google Scholar
    • Export Citation
  • Myhre, G. D., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., 659–740.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C., and M. H. Smith, 1993: Physicochemical properties of aerosols over the northeast Atlantic: Evidence for wind-speed-related submicron sea-salt aerosol production. J. Geophys. Res., 98, 11371149, doi:10.1029/92JD02302.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C., M. H. Smith, I. E. Consterdine, and J. A. Lowe, 1997: Marine aerosol, sea salt, and the marine sulphur cycle: A short review. Atmos. Environ., 31, 7380, doi:10.1016/S1352-2310(96)00106-9.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., H. Shiogama, T. Yokohata, and M. Watanabe, 2013: Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J. Climate, 26, 51695182, doi:10.1175/JCLI-D-12-00471.1.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and Coauthors, 2016: Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bull. Amer. Meteor. Soc., 97, 735754, doi:10.1175/BAMS-D-14-00233.1.

    • Search Google Scholar
    • Export Citation
  • Penner, J. E., and Coauthors, 2001: Aerosols, their direct and indirect effects. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 289–348.

  • Rap, A., C. E. Scott, D. V. Spracklen, N. Bellouin, P. M. Forster, K. S. Carslaw, A. Schmidt, and G. Mann, 2013: Natural aerosol direct and indirect radiative effects. Geophys. Res. Lett., 40, 32973301, doi:10.1002/grl.50441.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., M. A. Collier, M. R. Dix, Y. Feng, H. B. Gordon, S. P. O’Farrell, I. N. Smith, and J. Syktus, 2010: Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. Int. J. Climatol., 30, 10671088, doi:10.1002/joc.1952.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., M. A. Collier, R. M. Mitchell, Y. Qin, S. K. Campbell, and S. M. Dravitzki, 2011: Simulated enhancement of ENSO-related rainfall variability due to Australian dust. Atmos. Chem. Phys., 11, 65756592, doi:10.5194/acp-11-6575-2011.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., and K. K. Moorthy, 2005: Radiative effects of natural aerosols: A review. Atmos. Environ., 39, 20892110, doi:10.1016/j.atmosenv.2004.12.029.

    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual. Los Alamos National Laboratory Tech. Rep. LAUR-10-01853, 141 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf.]

  • Stevenson, S., B. Fox-Kemper, M. Jochum, B. Rajagopalan, and S. Yeager, 2010: Model ENSO validation using wavelet probability analysis. J. Climate, 23, 55405547, doi:10.1175/2010JCLI3609.1.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S., B. Fox-Kemper, M. Jochum, R. Neale, C. Deser, and G. Meehl, 2012: Will there be a significant change to El Niño in the twenty-first century? J. Climate, 25, 21292145, doi:10.1175/JCLI-D-11-00252.1.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S., B. Otto-Bliesner, J. Fasullo, and E. Brady, 2016: “El Niño like” hydroclimate responses to last millennium volcanic eruptions. J. Climate, 29, 29072921, doi:10.1175/JCLI-D-15-0239.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vance, T. R., T. D. van Ommen, M. A. J. Curran, C. T. Plummer, and A. D. Moy, 2013: A millennial proxy record of ENSO and eastern Australian rainfall from the Law Dome ice core, East Antarctica. J. Climate, 26, 710725, doi:10.1175/JCLI-D-12-00003.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Deser, J.-Y. Yu, P. DiNezio, and A. Clement, 2012: El Niño–Southern Oscillation (ENSO): A review. Coral Reefs of the Eastern Pacific, P. Glynn, D. Manzello, and I. Enochs, Eds., Springer Science, 3–19.

  • Wang, H., R. Zhang, J. Cole, and F. Chavez, 1999: El Niño and the related phenomenon Southern Oscillation (ENSO): The largest signal in interannual climate variation. Proc. Natl. Acad. Sci. USA, 96, 11 07111 072, doi:10.1073/pnas.96.20.11071.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Xu, L., and Coauthors, 2015: Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0. J. Geophys. Res. Atmos., 120, 15021519, doi:10.1002/2014JD022888.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., L. M. Russell, S. Lou, Y. Liu, B. Singh, and S. J. Ghan, 2016a: Rain–aerosol relationships influenced by wind speed. Geophys. Res. Lett., 43, 22672274, doi:10.1002/2016GL067770.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and Coauthors, 2016b: Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations. J. Geophys. Res. Atmos., 121, 63216335, doi:10.1002/2015JD024503.

    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., C. Timmreck, H.-F. Graf, A. Rubino, S. Lorenz, K. Lohmann, K. Krüger, and J. H. Jungclaus, 2012: Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39, 419444, doi:10.1007/s00382-011-1167-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 83 7
PDF Downloads 123 65 9

Changes in Sea Salt Emissions Enhance ENSO Variability

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • | 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 3 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • | 4 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 5 Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Two 150-yr preindustrial simulations with and without interactive sea salt emissions from the Community Earth System Model (CESM) are performed to quantify the interactions between sea salt emissions and El Niño–Southern Oscillation (ENSO). Variations in sea salt emissions over the tropical Pacific Ocean are affected by changing wind speed associated with ENSO variability. ENSO-induced interannual variations in sea salt emissions result in decreasing (increasing) aerosol optical depth (AOD) by 0.03 over the equatorial central-eastern (western) Pacific Ocean during El Niño events compared to those during La Niña events. These changes in AOD further increase (decrease) radiative fluxes into the atmosphere by +0.2 (−0.4) W m−2 over the tropical eastern (western) Pacific. Thereby, sea surface temperature increases (decreases) by 0.2–0.4 K over the tropical eastern (western) Pacific Ocean during El Niño compared to La Niña events and enhances ENSO variability by 10%. The increase in ENSO amplitude is a result of systematic heating (cooling) during the warm (cold) phase of ENSO in the eastern Pacific. Interannual variations in sea salt emissions then produce the anomalous ascent (subsidence) over the equatorial eastern (western) Pacific between El Niño and La Niña events, which is a result of heating anomalies. Owing to variations in sea salt emissions, the convective precipitation is enhanced by 0.6–1.2 mm day−1 over the tropical central-eastern Pacific Ocean and weakened by 0.9–1.5 mm day−1 over the Maritime Continent during El Niño compared to La Niña events, enhancing the precipitation variability over the tropical Pacific.

Corresponding author address: Prof. Lynn M. Russell, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0221. E-mail: lmrussell@ucsd.edu

Abstract

Two 150-yr preindustrial simulations with and without interactive sea salt emissions from the Community Earth System Model (CESM) are performed to quantify the interactions between sea salt emissions and El Niño–Southern Oscillation (ENSO). Variations in sea salt emissions over the tropical Pacific Ocean are affected by changing wind speed associated with ENSO variability. ENSO-induced interannual variations in sea salt emissions result in decreasing (increasing) aerosol optical depth (AOD) by 0.03 over the equatorial central-eastern (western) Pacific Ocean during El Niño events compared to those during La Niña events. These changes in AOD further increase (decrease) radiative fluxes into the atmosphere by +0.2 (−0.4) W m−2 over the tropical eastern (western) Pacific. Thereby, sea surface temperature increases (decreases) by 0.2–0.4 K over the tropical eastern (western) Pacific Ocean during El Niño compared to La Niña events and enhances ENSO variability by 10%. The increase in ENSO amplitude is a result of systematic heating (cooling) during the warm (cold) phase of ENSO in the eastern Pacific. Interannual variations in sea salt emissions then produce the anomalous ascent (subsidence) over the equatorial eastern (western) Pacific between El Niño and La Niña events, which is a result of heating anomalies. Owing to variations in sea salt emissions, the convective precipitation is enhanced by 0.6–1.2 mm day−1 over the tropical central-eastern Pacific Ocean and weakened by 0.9–1.5 mm day−1 over the Maritime Continent during El Niño compared to La Niña events, enhancing the precipitation variability over the tropical Pacific.

Corresponding author address: Prof. Lynn M. Russell, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0221. E-mail: lmrussell@ucsd.edu
Save