• Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, doi:10.1175/MWR-D-12-00257.1.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. F. Wehner, R. B. Neale, A. Gettelman, C. Hannay, P. H. Lauritzen, J. M. Caron, and J. E. Truesdale, 2014: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Climate, 27, 30733099, doi:10.1175/JCLI-D-13-00387.1.

    • Search Google Scholar
    • Export Citation
  • Balaguru, K., S. Taraphdar, L. R. Leung, G. R. Foltz, and J. A. Knaff, 2014: Cyclone–cyclone interactions through the ocean pathway. Geophys. Res. Lett., 41, 68556862, doi:10.1002/2014GL061489.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., J. M. Wilczak, J.-K. Choi, and L. H. Kantha, 2000: Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 21902210, doi:10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and M. E. Schlesinger, 1987: Detecting changes in global climate induced by greenhouse gases. J. Geophys. Res., 92, 14 77214 780, doi:10.1029/JD092iD12p14772.

    • Search Google Scholar
    • Export Citation
  • Bell, R., J. Strachan, P. L. Vidale, K. Hodges, and M. Roberts, 2013: Response of tropical cyclones to idealized climate change experiments in a global high-resolution coupled general circulation model. J. Climate, 26, 79667980, doi:10.1175/JCLI-D-12-00749.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946, doi:10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone–ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98, 23 24523 263, doi:10.1029/93JD02370.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and M. Esch, 2007: Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analyses. Tellus, 59A, 396416, doi:10.1111/j.1600-0870.2007.00236.x.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., K. M. Shell, P. R. Gent, D. A. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate sensitivity of the Community Climate System Model, version 4. J. Climate, 25, 30533070, doi:10.1175/JCLI-D-11-00290.1.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., C. Landsea, and E. J. Gibney, 2011: The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2010 (and other frequently requested hurricane facts). NOAA Tech. Memo. NWS NHC-6, 49 pp. [Available online at http://www.nhc.noaa.gov/pdf/nws-nhc-6.pdf.]

  • Brand, S., 1971: The effects on a tropical cyclone of cooler surface waters due to upwelling and mixing produced by a prior tropical cyclone. J. Appl. Meteor., 10, 865874, doi:10.1175/1520-0450(1971)010<0865:TEOATC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caron, L.-P., and C. Jones, 2012: Understanding and simulating the link between African easterly waves and Atlantic tropical cyclones using a regional climate model: The role of domain size and lateral boundary conditions. Climate Dyn., 39, 113135, doi:10.1007/s00382-011-1160-8.

    • Search Google Scholar
    • Export Citation
  • Chauvin, F., J.-F. Royer, and M. Déqué, 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dyn., 27, 377399, doi:10.1007/s00382-006-0135-7.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. H. Freilich, and S. K. Esbensen, 2000: Satellite observations of the wind jets off the Pacific coast of Central America. Part I: Case studies and statistical characteristics. Mon. Wea. Rev., 128, 19932018, doi:10.1175/1520-0493(2000)128<1993:SOOTWJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, doi:10.1175//2562.1.

    • Search Google Scholar
    • Export Citation
  • Daloz, A. S., F. Chauvin, and F. Roux, 2012a: Impact of the configuration of stretching and ocean–atmosphere coupling on tropical cyclone activity in the variable-resolution GCM ARPEGE. Climate Dyn., 39, 23432359, doi:10.1007/s00382-012-1561-3.

    • Search Google Scholar
    • Export Citation
  • Daloz, A. S., F. Chauvin, K. Walsh, S. Lavender, D. Abbs, and F. Roux, 2012b: The ability of general circulation models to simulate tropical cyclones and their precursors over the North Atlantic main development region. Climate Dyn., 39, 15591576, doi:10.1007/s00382-012-1290-7.

    • Search Google Scholar
    • Export Citation
  • Dare, R. A., and J. L. McBride, 2011: Sea surface temperature response to tropical cyclones. Mon. Wea. Rev., 139, 37983808, doi:10.1175/MWR-D-10-05019.1.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, doi:10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 13241334, doi:10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dennis, J. M., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 7489, doi:10.1177/1094342011428142.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Donnadieu, Y., R. Pierrehumbert, R. Jacob, and F. Fluteau, 2006: Modelling the primary control of paleogeography on Cretaceous climate. Earth Planet. Sci. Lett., 248, 426437, doi:10.1016/j.epsl.2006.06.007.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2015: Effect of upper-ocean evolution on projected trends in tropical cyclone activity. J. Climate, 28, 81658170, doi:10.1175/JCLI-D-15-0401.1.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., 1993: Sensitivity of tropical cyclone intensity to sea surface temperature. J. Climate, 6, 11331140, doi:10.1175/1520-0442(1993)006<1133:SOTCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, K. J., P. H. Lauritzen, S. K. Mishra, R. B. Neale, M. A. Taylor, and J. J. Tribbia, 2013: AMIP simulation with the CAM4 spectral element dynamical core. J. Climate, 26, 689709, doi:10.1175/JCLI-D-11-00448.1.

    • Search Google Scholar
    • Export Citation
  • Ferro, C. A. T., A. Hannachi, and D. B. Stephenson, 2005: Simple nonparametric techniques for exploring changing probability distributions of weather. J. Climate, 18, 43444354, doi:10.1175/JCLI3518.1.

    • Search Google Scholar
    • Export Citation
  • Galvin, J., 2008: The weather and climate of the tropics: Part 7—Tropical revolving storms. Weather, 63, 327333, doi:10.1002/wea.252.

    • Search Google Scholar
    • Export Citation
  • Ginis, I., 2002: Tropical cyclone–ocean interactions. Adv. Fluid Mech., 33, 83114, doi:10.1002/wea.252.

  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187, doi:10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, doi:10.1126/science.1060040.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guba, O., M. A. Taylor, P. A. Ullrich, J. R. Overfelt, and M. N. Levy, 2014: The spectral element method (SEM) on variable-resolution grids: Evaluating grid sensitivity and resolution-aware numerical viscosity. Geosci. Model Dev., 7, 28032816, doi:10.5194/gmd-7-2803-2014.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., R. N. Maue, and M. C. Watson, 2007: Estimating local memory of tropical cyclones through MPI anomaly evolution. Mon. Wea. Rev., 135, 39904005, doi:10.1175/2007MWR2038.1.

    • Search Google Scholar
    • Export Citation
  • Hazelworth, J. B., 1968: Water temperature variations resulting from hurricanes. J. Geophys. Res., 73, 51055123, doi:10.1029/JB073i016p05105.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, doi:10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, P., T. B. Sanford, and J. Imberger, 2009: Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004). J. Geophys. Res., 114, C12023, doi:10.1029/2009JC005603.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, doi:10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., R. Ferrari, and T. A. Mooring, 2010: Seasonal versus permanent thermocline warming by tropical cyclones. Geophys. Res. Lett., 37, L03602, doi:10.1029/2009GL041808.

    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., B. Barnier, N. Ferry, J. Vialard, C. E. Menkes, M. Lengaigne, and L. Parent, 2014: Tropical cyclones in two atmospheric (re)analyses and their response in two oceanic reanalyses. Ocean Modell., 73, 108122, doi:10.1016/j.ocemod.2013.10.007.

    • Search Google Scholar
    • Export Citation
  • Jullien, S., P. Marchesiello, C. Menkes, J. Lefèvre, N. Jourdain, G. Samson, and M. Lengaigne, 2014: Ocean feedback to tropical cyclones: Climatology and processes. Climate Dyn., 43, 28312854, doi:10.1007/s00382-014-2096-6.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., C. A. Shields, J. J. Hack, and W. D. Collins, 2006: The climate sensitivity of the Community Climate System Model version 3 (CCSM3). J. Climate, 19, 25842596, doi:10.1175/JCLI3747.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., G. A. Vecchi, T. R. Knutson, W. G. Anderson, T. L. Delworth, A. Rosati, F. Zeng, and M. Zhao, 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 27, 80348054, doi:10.1175/JCLI-D-13-00475.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive For Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., R. E. Tuleya, W. Shen, and I. Ginis, 2001: Impact of CO2-induced warming on hurricane intensities as simulated in a hurricane model with ocean coupling. J. Climate, 14, 24582468, doi:10.1175/1520-0442(2001)014<2458:IOCIWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landman, W. A., A. Seth, and S. J. Camargo, 2005: The effect of regional climate model domain choice on the simulation of tropical cyclone–like vortices in the southwestern Indian Ocean. J. Climate, 18, 12631274, doi:10.1175/JCLI3324.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., R. L. Sriver, and M. Goes, 2016: Modeled sensitivity of the Northwestern Pacific upper-ocean response to tropical cyclones in a fully coupled climate model with varying ocean grid resolution. J. Geophys. Res., 121, 586601, doi:10.1002/2015JC011226.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., I.-F. Pun, and C.-C. Wu, 2009: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 37443757, doi:10.1175/2009MWR2713.1.

    • Search Google Scholar
    • Export Citation
  • Lloyd, I. D., and G. A. Vecchi, 2011: Observational evidence for oceanic controls on hurricane intensity. J. Climate, 24, 11381153, doi:10.1175/2010JCLI3763.1.

    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 38673893, doi:10.1175/JCLI-D-11-00346.1.

    • Search Google Scholar
    • Export Citation
  • Mei, W., and C. Pasquero, 2013: Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Climate, 26, 37453765, doi:10.1175/JCLI-D-12-00125.1.

    • Search Google Scholar
    • Export Citation
  • Morey, S. L., M. A. Bourassa, D. S. Dukhovskoy, and J. J. O’Brien, 2006: Modeling studies of the upper ocean response to a tropical cyclone. Ocean Dyn., 56, 594606, doi:10.1007/s10236-006-0085-y.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, doi:10.1175/JCLI-D-11-00415.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2015: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079, doi:10.1175/JCLI-D-15-0216.1.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp.

  • Needham, H. F., B. D. Keim, and D. Sathiaraj, 2015: A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Rev. Geophys., 53, 545591, doi:10.1002/2014RG000477.

    • Search Google Scholar
    • Export Citation
  • Ogata, T., R. Mizuta, Y. Adachi, H. Murakami, and T. Ose, 2016: Atmosphere–ocean coupling effect on intense tropical cyclone distribution and its future change with 60 km-AOGCM. Sci. Rep., 6, 29800, doi:10.1038/srep29800.

    • Search Google Scholar
    • Export Citation
  • Oleson, K., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., doi:10.5065/D6FB50WZ.

  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276, doi:10.2151/jmsj.84.259.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., J. Morzel, and P. P. Niiler, 2008: Warming of SST in the cool wake of a moving hurricane. J. Geophys. Res., 113, C07010, doi:10.1029/2007JC004393.

    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., I.-I. Lin, and M.-H. Lo, 2013: Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophys. Res. Lett., 40, 46804684, doi:10.1002/grl.50548.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., J. T. Bacmeister, N. A. Rosenbloom, M. F. Wehner, S. C. Bates, P. H. Lauritzen, J. E. Truesdale, and C. Hannay, 2015: Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model. Geophys. Res. Lett., 42, 36033608, doi:10.1002/2015GL063974.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Samson, G., H. Giordani, G. Caniaux, and F. Roux, 2009: Numerical investigation of an oceanic resonant regime induced by hurricane winds. Ocean Dyn., 59, 565586, doi:10.1007/s10236-009-0203-8.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, and P. D. Jones, 1993: Correlation methods in fingerprint detection studies. Climate Dyn., 8, 265276, doi:10.1007/BF00209666.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2012: The intra-seasonal oscillation and its control of tropical cyclones simulated by high-resolution global atmospheric models. Climate Dyn., 39, 21852206, doi:10.1007/s00382-011-1235-6.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, doi:10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384, doi:10.1175/2011JCLI4104.1.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20 22720 248, doi:10.1029/92JC01586.

    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., 1974: The hurricane disaster—Potential scale. Weatherwise, 27, 169186, doi:10.1080/00431672.1974.9931702.

  • Small, R. J., and Coauthors, 2014: A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst., 6, 10651094, doi:10.1002/2014MS000363.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577580, doi:10.1038/nature05785.

    • Search Google Scholar
    • Export Citation
  • Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E. Demory, 2013: Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Climate, 26, 133152, doi:10.1175/JCLI-D-12-00012.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229, 58795895, doi:10.1016/j.jcp.2010.04.008.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92108, doi:10.1006/jcph.1996.5554.

    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A., and C. M. Zarzycki, 2016: TempestExtremes v1.0: A framework for scale-insensitive pointwise feature tracking on unstructured grids. Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-217, in press.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, doi:10.1175/JCLI-D-14-00158.1.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, G. Madec, J. Vialard, G. Samson, N. C. Jourdain, C. E. Menkes, and S. Jullien, 2012a: Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C02020, doi:10.1029/2011JC007396.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, J. Vialard, G. Madec, N. C. Jourdain, and S. Masson, 2012b: Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C05023, doi:10.1029/2011JC007705.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314, doi:10.1175/JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., and Coauthors, 2015: Hurricanes and climate: The U.S. CLIVAR working group on hurricanes. Bull. Amer. Meteor. Soc., 96, 9971017, doi:10.1175/BAMS-D-13-00242.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, doi:10.1038/nclimate2118.

    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., and Coauthors, 2014: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst., 6, 980997, doi:10.1002/2013MS000276.

    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., Prabhat, K. A. Reed, D. Stone, W. D. Collins, and J. T. Bacmeister, 2015: Resolution dependence of future tropical cyclone projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group idealized configurations. J. Climate, 28, 39053925, doi:10.1175/JCLI-D-14-00311.1.

    • Search Google Scholar
    • Export Citation
  • Young, I. T., 1977: Proof without prejudice: Use of the Kolmogorov–Smirnov test for the analysis of histograms from flow systems and other sources. J. Histochem. Cytochem., 25, 935941, doi:10.1177/25.7.894009.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J. Adv. Model. Earth Syst., 6, 805828, doi:10.1002/2014MS000352.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor, and P. A. Ullrich, 2014: Aquaplanet experiments using CAM’s variable-resolution dynamical core. J. Climate, 27, 54815503, doi:10.1175/JCLI-D-14-00004.1.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor, 2015: Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model. J. Climate, 28, 27772803, doi:10.1175/JCLI-D-14-00599.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S. J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 362 230 13
PDF Downloads 221 143 9

Tropical Cyclone Intensity Errors Associated with Lack of Two-Way Ocean Coupling in High-Resolution Global Simulations

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Tropical cyclones (TCs), particularly those that are intense and/or slow moving, induce sea surface temperature (SST) reductions along their tracks (commonly referred to as cold wakes) that provide a negative feedback on storm energetics by weakening surface enthalpy fluxes. While computing gains have allowed for simulated TC intensity to increase in global climate models as a result of increased horizontal resolution, many configurations utilize prescribed, noninteractive SSTs as a surface boundary condition to minimize computational cost and produce more accurate TC climatologies. Here, an idealized slab ocean is coupled to a 0.25° variable-resolution version of the Community Atmosphere Model (CAM) to improve closure of the surface energy balance and reproduce observed Northern Hemisphere cold wakes. This technique produces cold wakes that are realistic in structure and evolution and with magnitudes similar to published observations, without impacting large-scale SST climatology. Multimember ensembles show that the overall number of TCs generated by the model is reduced by 5%–9% when allowing for two-way air–sea interactions. TC intensity is greatly impacted; the strongest 1% of all TCs are 20–30 hPa (4–8 m s−1) weaker, and the number of simulated Saffir–Simpson category 4 and 5 TCs is reduced by 65% in slab ocean configurations. Reductions in intensity are in line with published thermodynamic theory. Additional offline experiments and sensitivity simulations demonstrate this response is both significant and robust. These results imply caution should be exercised when assessing high-resolution prescribed SST climate simulations capable of resolving intense TCs, particularly if discrete analysis of extreme events is desired.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Colin M. Zarzycki, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: zarzycki@ucar.edu

Abstract

Tropical cyclones (TCs), particularly those that are intense and/or slow moving, induce sea surface temperature (SST) reductions along their tracks (commonly referred to as cold wakes) that provide a negative feedback on storm energetics by weakening surface enthalpy fluxes. While computing gains have allowed for simulated TC intensity to increase in global climate models as a result of increased horizontal resolution, many configurations utilize prescribed, noninteractive SSTs as a surface boundary condition to minimize computational cost and produce more accurate TC climatologies. Here, an idealized slab ocean is coupled to a 0.25° variable-resolution version of the Community Atmosphere Model (CAM) to improve closure of the surface energy balance and reproduce observed Northern Hemisphere cold wakes. This technique produces cold wakes that are realistic in structure and evolution and with magnitudes similar to published observations, without impacting large-scale SST climatology. Multimember ensembles show that the overall number of TCs generated by the model is reduced by 5%–9% when allowing for two-way air–sea interactions. TC intensity is greatly impacted; the strongest 1% of all TCs are 20–30 hPa (4–8 m s−1) weaker, and the number of simulated Saffir–Simpson category 4 and 5 TCs is reduced by 65% in slab ocean configurations. Reductions in intensity are in line with published thermodynamic theory. Additional offline experiments and sensitivity simulations demonstrate this response is both significant and robust. These results imply caution should be exercised when assessing high-resolution prescribed SST climate simulations capable of resolving intense TCs, particularly if discrete analysis of extreme events is desired.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Colin M. Zarzycki, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: zarzycki@ucar.edu
Save