• Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, doi:10.1175/JCLI3815.1.

    • Search Google Scholar
    • Export Citation
  • Boisier, J. P., R. Rondanelli, R. D. Garreaud, and F. Muñoz, 2016: Anthropogenic and natural contributions to the southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys. Res. Lett., 43, 413421, doi:10.1002/2015GL067265.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2014: Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci., 7, 583587, doi:10.1038/ngeo2201.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, A. Rosati, G. A. Vecchi, and A. T. Wittenberg, 2015: A link between the hiatus in global warming and North American drought. J. Climate, 28, 38343845, doi:10.1175/JCLI-D-14-00616.1.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., G. A. Vecchi, and A. C. Clement, 2013: Detectability of changes in the Walker circulation in response to global warming. J. Climate, 26, 40384048, doi:10.1175/JCLI-D-12-00531.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, P. L. M., L. Goddard, and A. M. Greene, 2013: Twentieth-century summer precipitation in south eastern South America: Comparison of gridded and station data. Int. J. Climatol., 33, 29232928, doi:10.1002/joc.3633.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, P. L. M., L. M. Polvani, R. Seager, and G. J. P. Correa, 2014: Stratospheric ozone depletion: A key driver of recent precipitation trends in south eastern South America. Climate Dyn., 42, 17751792, doi:10.1007/s00382-013-1777-x.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., R. Seager, and Y. Kushnir, 2005: The 1976/77 transition in precipitation over the Americas and the influence of tropical sea surface temperature. Climate Dyn., 24, 721740, doi:10.1007/s00382-005-0015-6.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, doi:10.1175/JCLI-D-14-00112.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and L. M. V. Carvalho, 2013: Climate change in the South American monsoon system: Present climate and CMIP5 projections. J. Climate, 26, 66606678, doi:10.1175/JCLI-D-12-00412.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., L. M. Polvani, J. C. Fyfe, and M. Sigmond, 2011: Impact of polar ozone depletion on subtropical precipitation. Science, 332, 951954, doi:10.1126/science.1202131.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic Change, 109, 213, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and C. R. Mechoso, 1998: Interannual and decadal cycles in river flows of southeastern South America. J. Climate, 11, 25702581, doi:10.1175/1520-0442(1998)011<2570:IADCIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2011: GPCC full data reanalysis at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data, version 6.0. Deutscher Wetterdienst/Global Precipitation Climatology Centre, accessed 20 August 2015, doi:10.5676/DWD_GPCC/FD_M_V6_050.

  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, doi:10.1126/science.1139601.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, W. Baethgen, A. Robertson, Y. Kushnir, J. Nakamura, and S. Jurburg, 2010: Tropical oceanic causes of interannual to multidecadal precipitation variability in southeast South America over the past century. J. Climate, 23, 55175539, doi:10.1175/2010JCLI3578.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, doi:10.1175/JCLI-D-14-00158.1.

    • Search Google Scholar
    • Export Citation
  • Viglizzo, E. F., and F. C. Frank, 2006: Ecological interactions, feedbacks, thresholds and collapses in the Argentine Pampas in response to climate and farming during the last century. Quat. Int., 158, 122126, doi:10.1016/j.quaint.2006.05.022.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, doi:10.1175/JAS3821.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., R. Seager, M. Ting, N. Naik, and T. A. Shaw, 2012: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part I: Model experiments and transient thermal response in the troposphere. J. Climate, 25, 28622879, doi:10.1175/JCLI-D-11-00284.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., R. Seager, T. A. Shaw, M. Ting, and N. Naik, 2013: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part II: Atmospheric transient adjustment and its dynamics. J. Climate, 26, 918935, doi:10.1175/JCLI-D-12-00104.1.

    • Search Google Scholar
    • Export Citation
  • Yang, X., G. A. Vecchi, T. L. Delworth, K. Paffendorf, R. Gudgel, L. Jia, S. D. Underwood, and F. Zeng, 2015: Extreme North America winter storm season of 2013/14: Roles of radiative forcing and the global warming hiatus. Bull. Amer. Meteor. Soc., 96 (Suppl.), S25–S28, doi:10.1175/BAMS-D-15-00133.1.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 375 220 22
PDF Downloads 109 58 8

Detection, Attribution, and Projection of Regional Rainfall Changes on (Multi-) Decadal Time Scales: A Focus on Southeastern South America

View More View Less
  • 1 Program in Atmospheric and Oceanic Sciences, Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 2 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 3 Program in Atmospheric and Oceanic Sciences, Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Observed austral summertime (November through April) rainfall in southeastern South America (SESA)—including northern Argentina, Uruguay, southern Brazil, and Paraguay—has exhibited substantial low-frequency variations with a multidecadal moistening trend during the twentieth century and a subsequent decadal drying trend during the current century. Understanding the mechanisms responsible for these variations is essential for predicting long-term rainfall changes. Here with a suite of attribution experiments using a pair of high-resolution global climate models, GFDL CM2.5 and FLOR-FA, the authors investigate the causes of these regional rainfall variations. Both models reproduce the twentieth-century moistening trend, albeit with a weaker magnitude than observed, in response to the radiative forcing associated with increasing greenhouse gases. The increasing greenhouse gases drive tropical expansion; consequently, the subtropical dry branch of Hadley cell moves away from SESA, leading to the rainfall increase. The amplitude discrepancy between the observed and simulated rainfall changes suggests a possible underestimation by the models of the atmospheric response to the radiative forcing, as well as an important role for low-frequency internal variability in the observed moistening trend. Over the current century, increasing greenhouse gases drive a continuous SESA rainfall increase in the models. However, the observed decadal rainfall decline is largely (~60%) reproduced in response to the observed Pacific trade wind strengthening, which is likely associated with natural Pacific decadal variability. These results suggest that the recent summertime rainfall decline in SESA is temporary and that the positive trend will resume in response to both increasing greenhouse gases and a return of Pacific trade winds to normal conditions.

Corresponding author address: Honghai Zhang, NOAA/Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton, NJ 08540. E-mail: honghai.zhang@noaa.gov

Abstract

Observed austral summertime (November through April) rainfall in southeastern South America (SESA)—including northern Argentina, Uruguay, southern Brazil, and Paraguay—has exhibited substantial low-frequency variations with a multidecadal moistening trend during the twentieth century and a subsequent decadal drying trend during the current century. Understanding the mechanisms responsible for these variations is essential for predicting long-term rainfall changes. Here with a suite of attribution experiments using a pair of high-resolution global climate models, GFDL CM2.5 and FLOR-FA, the authors investigate the causes of these regional rainfall variations. Both models reproduce the twentieth-century moistening trend, albeit with a weaker magnitude than observed, in response to the radiative forcing associated with increasing greenhouse gases. The increasing greenhouse gases drive tropical expansion; consequently, the subtropical dry branch of Hadley cell moves away from SESA, leading to the rainfall increase. The amplitude discrepancy between the observed and simulated rainfall changes suggests a possible underestimation by the models of the atmospheric response to the radiative forcing, as well as an important role for low-frequency internal variability in the observed moistening trend. Over the current century, increasing greenhouse gases drive a continuous SESA rainfall increase in the models. However, the observed decadal rainfall decline is largely (~60%) reproduced in response to the observed Pacific trade wind strengthening, which is likely associated with natural Pacific decadal variability. These results suggest that the recent summertime rainfall decline in SESA is temporary and that the positive trend will resume in response to both increasing greenhouse gases and a return of Pacific trade winds to normal conditions.

Corresponding author address: Honghai Zhang, NOAA/Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton, NJ 08540. E-mail: honghai.zhang@noaa.gov
Save