• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aggarwal, P. K., K. Fröhlich, K. M. Kulkarni, and L. L. Gourcy, 2004: Stable isotope evidence for moisture sources in the Asian summer monsoon under present and past climate regimes. Geophys. Res. Lett., 31, L08203, doi:10.1029/2004GL019911.

    • Search Google Scholar
    • Export Citation
  • An, Z., and Coauthors, 2015: Global monsoon dynamics and climate change. Annu. Rev. Earth Planet. Sci., 43, 2977, doi:10.1146/annurev-earth-060313-054623.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389407, doi:10.5194/hess-19-389-2015.

    • Search Google Scholar
    • Export Citation
  • Cai, Z., and L. Tian, 2016: Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian monsoon region. J. Climate, 29, 13391352, doi:10.1175/JCLI-D-15-0363.1.

    • Search Google Scholar
    • Export Citation
  • Castillo, R., R. Nieto, A. Drumond, and L. Gimeno, 2014: The role of the ENSO cycle in the modulation of moisture transport from major oceanic moisture sources. Water Resour. Res., 50, 10461058, doi:10.1002/2013WR013900.

    • Search Google Scholar
    • Export Citation
  • Chan, S. C., and J. L. Evans, 2002: Comparison of the structure of the ITCZ in the west Pacific during the boreal summers of 1989–93 using AMIP simulations and ECMWF reanalysis. J. Climate, 15, 35493568, doi:10.1175/1520-0442(2002)015<3549:COTSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Conroy, J. L., K. M. Cobb, and D. Noone, 2013: Comparison of precipitation isotope variability across the tropical Pacific in observations and SWING2 model simulations. J. Geophys. Res. Atmos., 118, 58675892, doi:10.1002/jgrd.50412.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16, 436468, doi:10.1111/j.2153-3490.1964.tb00181.x.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Feng, X., A. M. Faiia, and E. S. Posmentier, 2009: Seasonality of isotopes in precipitation: A global perspective. J. Geophys. Res., 114, D08116, doi:10.1029/2008JD011279.

    • Search Google Scholar
    • Export Citation
  • He, Y., and Coauthors, 2015: Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data and atmospheric general circulation modeling. J. Geophys. Res. Atmos., 120, 38523871, doi:10.1002/2014JD022180.

    • Search Google Scholar
    • Export Citation
  • Ichiyanagi, K., and M. D. Yamanaka, 2005: Interannual variation of stable isotopes in precipitation at Bangkok in response to El Niño Southern Oscillation. Hydrol. Processes, 19, 34133423, doi:10.1002/hyp.5978.

    • Search Google Scholar
    • Export Citation
  • Ishizaki, Y., K. Yoshimura, S. Kanae, M. Kimoto, N. Kurita, and T. Oki, 2012: Interannual variability of H2 18O in precipitation over the Asian monsoon region. J. Geophys. Res., 117, D16308, doi:10.1029/2011JD015890.

    • Search Google Scholar
    • Export Citation
  • Ju, J., and J. Slingo, 1995: The Asian summer monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 121, 11331168, doi:10.1002/qj.49712152509.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., and V. Krishnamurthy, 2014: Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Climate Dyn., 42, 23972410, doi:10.1007/s00382-013-1856-z.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., L. Stefanova, and V. Misra, 2013: El Niño and Southern Oscillation. Tropical Meteorology, T. N. Krishnamurti, L. Stefanova, and V. Misra, Eds., Springer, 197–220.

  • Kurita, N., 2013: Water isotopic variability in response to mesoscale convective system over the tropical ocean. J. Geophys. Res. Atmos., 118, 10 376–10 390, doi:10.1002/jgrd.50754.

  • Lawrence, R. J., and D. S. Gedzelman, 1996: Low stable isotope ratios of tropical cyclone rains. Geophys. Res. Lett., 23, 527530, doi:10.1029/96GL00425.

    • Search Google Scholar
    • Export Citation
  • Lee, J., and Coauthors, 2011: Relating tropical ocean clouds to moist processes using water vapor isotope measurements. Atmos. Chem. Phys., 11, 741752, doi:10.5194/acp-11-741-2011.

    • Search Google Scholar
    • Export Citation
  • Lee, J., J. Worden, D. Noone, J. H. Chae, and C. Frankenberg, 2015: Isotopic changes due to convective moistening of the lower troposphere associated with variations in the ENSO and IOD from 2005 to 2006. Tellus, 67B, 26177, doi:10.3402/tellusb.v67.26177.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-E., and I. Fung, 2008: “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Processes, 22, 18, doi:10.1002/hyp.6637.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-E., I. Fung, D. J. DePaolo, and C. C. Henning, 2007: Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. J. Geophys. Res., 112, D16306, doi:10.1029/2006JD007657.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-E., C. Risi, I. Fung, J. Worden, R. A. Scheepmaker, B. Lintner, and C. Frankenberg, 2012: Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: Implications for speleothem climate record interpretation. J. Geophys. Res., 117, D15112, doi:10.1029/2011JD017133.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Moore, M., Z. Kuang, and P. N. Blossey, 2014: A moisture budget perspective of the amount effect. Geophys. Res. Lett., 41, 13291335, doi:10.1002/2013GL058302.

    • Search Google Scholar
    • Export Citation
  • Nan, S., M. Tan, and P. Zhao, 2014: Evaluation of the ability of the Chinese stalagmite δ18O to record the variation in atmospheric circulation during the second half of the 20th century. Climate Past, 10, 975985, doi:10.5194/cp-10-975-2014.

    • Search Google Scholar
    • Export Citation
  • Noone, D., 2012: Pairing measurements of the water vapor isotope ratio with humidity to deduce atmospheric moistening and dehydration in the tropical midtroposphere. J. Climate, 25, 44764494, doi:10.1175/JCLI-D-11-00582.1.

    • Search Google Scholar
    • Export Citation
  • Okazaki, A., Y. Satoh, G. Tremoy, F. Vimeux, R. Scheepmaker, and K. Yoshimura, 2015: Interannual variability of isotopic composition in water vapor over western Africa and its relationship to ENSO. Atmos. Chem. Phys., 15, 31933204, doi:10.5194/acp-15-3193-2015.

    • Search Google Scholar
    • Export Citation
  • Permana, D. S., L. G. Thompson, and G. Setyadi, 2016: Tropical west Pacific moisture dynamics and climate controls on rainfall isotopic ratios in southern Papua, Indonesia. J. Geophys. Res. Atmos., 121, 22222245, doi:10.1002/2015JD023893.

    • Search Google Scholar
    • Export Citation
  • Risi, C., S. Bony, and F. Vimeux, 2008a: Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res., 113, D19306, doi:10.1029/2008JD009943.

    • Search Google Scholar
    • Export Citation
  • Risi, C., S. Bony, F. Vimeux, L. Descroix, B. Ibrahim, E. Lebreton, I. Mamadou, and B. Sultan, 2008b: What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign. Geophys. Res. Lett., 35, L24808, doi:10.1029/2008GL035920.

    • Search Google Scholar
    • Export Citation
  • Risi, C., and Coauthors, 2012: Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. J. Geophys. Res., 117, D05303, doi:10.1029/2011JD016621.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scholl, M. A., J. B. Shanley, J. P. Zegarra, and T. B. Coplen, 2009: The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico. Water Resour. Res., 45, W12407, doi:10.1029/2008WR007515.

    • Search Google Scholar
    • Export Citation
  • Sengupta, S., and A. Sarkar, 2006: Stable isotope evidence of dual (Arabian Sea and Bay of Bengal) vapour sources in monsoonal precipitation over north India. Earth Planet. Sci. Lett., 250, 511521, doi:10.1016/j.epsl.2006.08.011.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R., R. Ramesh, N. Gandhi, R. A. Jani, and A. K. Singh, 2015: Monsoon onset signal in the stable oxygen and hydrogen isotope ratios of monsoon vapor. Atmos. Environ., 108, 117124, doi:10.1016/j.atmosenv.2015.02.062.

    • Search Google Scholar
    • Export Citation
  • Sutanto, S. J., G. Hoffmann, J. Worden, R. A. Scheepmaker, I. Aben, and T. Röckmann, 2015: Atmospheric processes governing the changes in water isotopologues during ENSO events from model and satellite measurements. J. Geophys. Res. Atmos., 120, 67126729, doi:10.1002/2015JD023228.

    • Search Google Scholar
    • Export Citation
  • Tan, M., 2014: Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Climate Dyn., 42, 10671077, doi:10.1007/s00382-013-1732-x.

    • Search Google Scholar
    • Export Citation
  • Thompson, L. G., T. Yao, E. Mosley-Thompson, M. E. Davis, K. A. Henderson, and P.-N. Lin, 2000: A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science, 289, 19161919, doi:10.1126/science.289.5486.1916.

    • Search Google Scholar
    • Export Citation
  • Tian, L., V. Masson-Delmotte, M. Stievenard, T. Yao, and J. Jouzel, 2001: Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J. Geophys. Res., 106, 28 08128 088, doi:10.1029/2001JD900186.

    • Search Google Scholar
    • Export Citation
  • Tian, L., T. Yao, K. MacClune, J. W. C. White, A. Schilla, B. Vaughn, R. Vachon, and K. Ichiyanagi, 2007: Stable isotopic variations in west China: A consideration of moisture sources. J. Geophys. Res., 112, D10112, doi:10.1029/2006JD007718.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 2771–2777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., and H. H. G. Savenije, 2013: Oceanic sources of continental precipitation and the correlation with sea surface temperature. Water Resour. Res., 49, 39934004, doi:10.1002/wrcr.20296.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Worden, J., and Coauthors, 2006: Tropospheric emission spectrometer observations of the tropospheric HDO/H2O ratio: Estimation approach and characterization. J. Geophys. Res., 111, D16309, doi:10.1029/2005JD006606.

    • Search Google Scholar
    • Export Citation
  • Worden, J., and Coauthors, 2011: Estimate of bias in Aura TES HDO/H2O profiles from comparison of TES and in situ HDO/H2O measurements at the Mauna Loa observatory. Atmos. Chem. Phys., 11, 44914503, doi:10.5194/acp-11-4491-2011.

    • Search Google Scholar
    • Export Citation
  • Worden, J., and Coauthors, 2012: Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances. Atmos. Meas. Tech., 5, 397411, doi:10.5194/amt-5-397-2012.

    • Search Google Scholar
    • Export Citation
  • Yang, X., T. Yao, W. Yang, B. Xu, Y. He, and D. Qu, 2012: Isotopic signal of earlier summer monsoon onset in the Bay of Bengal. J. Climate, 25, 25092516, doi:10.1175/JCLI-D-11-00180.1.

    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2013: A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys., 51, 525–548, doi:10.1002/rog.20023.

  • Yoshimura, K., T. Oki, N. Ohte, and S. Kanae, 2003: A quantitative analysis of short-term 18O variability with a Rayleigh-type isotope circulation model. J. Geophys. Res., 108, 4647, doi:10.1029/2003JD003477.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., M. Kanamitsu, and M. Dettinger, 2010: Regional downscaling for stable water isotopes: A case study of an atmospheric river event. J. Geophys. Res., 115, D18114, doi:10.1029/2010JD014032.

    • Search Google Scholar
    • Export Citation
  • Yu, W., and Coauthors, 2016: Short-term variability in the dates of the Indian monsoon onset and retreat on the southern and northern slopes of the central Himalayas as determined by precipitation stable isotopes. Climate Dyn., 47, 159–172, doi:10.1007/s00382-015-2829-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 265 163 16
PDF Downloads 295 198 15

Processes Governing Water Vapor Isotope Composition in the Indo-Pacific Region: Convection and Water Vapor Transport

View More View Less
  • 1 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • | 2 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, and Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In an effort to understand the mechanisms controlling water vapor isotope composition in the Indo-Pacific region, encompassing southeastern Asia, this study investigates the spatial and interannual patterns in summer [June–September (JJAS)] water vapor isotopologues retrieved from the Tropospheric Emission Spectrometer (TES), especially those patterns associated with convection and water vapor transport. Both precipitation and water vapor isotope values exhibit a V-shaped longitudinal pattern in their spatial variations, reflecting the gradual rainout and increase in convective intensity along water vapor transport routes. On the temporal scale, compared with the 2006–10 JJAS mean conditions, TES water vapor δD over the eastern Indian Ocean and southeastern Asia (R_W120; 10°S–30°N, 80°–120°E) is higher in the 2009 JJAS El Niño event when convective activity is reduced and lower in the 2010 JJAS La Niña event when convective activity is enhanced. This is consistent with the direct response of water vapor δD to deep convection. In contrast, TES water vapor δD over the western Pacific (R_WP; 10°S–30°N, 120°–140°E) is higher in the La Niña year than in the El Niño year, although convective activity in R_WP varies in the same manner as in R_W120. A comparison of water vapor δD values with convection and water vapor transport suggests that the westward transport of water vapor–isotopic anomalies and changes in the flux of water vapor transported from the central to the western Pacific lead to such an opposite response in the R_WP. These findings help interpret what causes the interannual variations recorded by Indo-Pacific water isotopologues.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0297.s1.

Corresponding author address: Lide Tian, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing 100101, China. E-mail: ldt@itpcas.ac.cn

Abstract

In an effort to understand the mechanisms controlling water vapor isotope composition in the Indo-Pacific region, encompassing southeastern Asia, this study investigates the spatial and interannual patterns in summer [June–September (JJAS)] water vapor isotopologues retrieved from the Tropospheric Emission Spectrometer (TES), especially those patterns associated with convection and water vapor transport. Both precipitation and water vapor isotope values exhibit a V-shaped longitudinal pattern in their spatial variations, reflecting the gradual rainout and increase in convective intensity along water vapor transport routes. On the temporal scale, compared with the 2006–10 JJAS mean conditions, TES water vapor δD over the eastern Indian Ocean and southeastern Asia (R_W120; 10°S–30°N, 80°–120°E) is higher in the 2009 JJAS El Niño event when convective activity is reduced and lower in the 2010 JJAS La Niña event when convective activity is enhanced. This is consistent with the direct response of water vapor δD to deep convection. In contrast, TES water vapor δD over the western Pacific (R_WP; 10°S–30°N, 120°–140°E) is higher in the La Niña year than in the El Niño year, although convective activity in R_WP varies in the same manner as in R_W120. A comparison of water vapor δD values with convection and water vapor transport suggests that the westward transport of water vapor–isotopic anomalies and changes in the flux of water vapor transported from the central to the western Pacific lead to such an opposite response in the R_WP. These findings help interpret what causes the interannual variations recorded by Indo-Pacific water isotopologues.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0297.s1.

Corresponding author address: Lide Tian, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing 100101, China. E-mail: ldt@itpcas.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.32 MB)
Save