• Adler, R. F., and et al. , 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., , and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Anav, A., and et al. , 2013: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth system models. J. Climate, 26, 68016843, doi:10.1175/JCLI-D-12-00417.1.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and et al. , 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and et al. , 2013: Carbon–concentration and carbon– climate feedbacks in CMIP5 Earth system models. J. Climate, 26, 52895314, doi:10.1175/JCLI-D-12-00494.1.

    • Search Google Scholar
    • Export Citation
  • Bacastow, R., 1976: Modulation of atmospheric carbon dioxide by the Southern Oscillation. Nature, 261, 116118, doi:10.1038/261116a0.

  • Behrenfeld, M. J., and et al. , 2001: Biospheric primary production during an ENSO transition. Science, 291, 25942597, doi:10.1126/science.1055071.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., , E. Guilyardi, , J. Leloup, , M. Lengaigne, , and J. Vialard, 2013: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., and et al. , 2012: High sensitivity of future global warming to land carbon cycle processes. Environ. Res. Lett., 7, 024002, doi:10.1088/1748-9326/7/2/024002.

    • Search Google Scholar
    • Export Citation
  • Bousquet, P., , P. Peylin, , P. Ciais, , C. Le Quere, , P. Friedlingstein, , and P. P. Tans, 2000: Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 290, 13421346, doi:10.1126/science.290.5495.1342.

    • Search Google Scholar
    • Export Citation
  • Braswell, B. H., , D. S. Schimel, , E. Linder, , and B. Moore, 1997: The response of global terrestrial ecosystems to interannual temperature variability. Science, 278, 870872, doi:10.1126/science.278.5339.870.

    • Search Google Scholar
    • Export Citation
  • Brovkin, V., , T. Raddatz, , C. H. Reick, , M. Claussen, , and V. Gayler, 2009: Global biogeophysical interactions between forest and climate. Geophys. Res. Lett., 36, L07405, doi:10.1029/2009GL037543.

    • Search Google Scholar
    • Export Citation
  • Cao, M. K., , S. D. Prince, , B. Tao, , J. Small, , and K. R. Li, 2005: Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO2. Tellus, 57B, 210217, doi:10.1111/j.1600-0889.2005.00146.x.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., , Z. Wang, , J. McBride, , and C.-H. Liu, 2005: Annual cycle of Southeast Asia—Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287301, doi:10.1175/JCLI-3257.1.

    • Search Google Scholar
    • Export Citation
  • Clark, D. A., , S. C. Piper, , C. D. Keeling, , and D. B. Clark, 2003: Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc. Natl. Acad. Sci. USA, 100, 58525857, doi:10.1073/pnas.0935903100.

    • Search Google Scholar
    • Export Citation
  • Clark, D. A., , D. B. Clark, , and S. F. Oberbauer, 2013: Field-quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997–2009. J. Geophys. Res. Biogeosci., 118, 783794, doi:10.1002/jgrg.20067.

    • Search Google Scholar
    • Export Citation
  • Collins, M., , R. E. Chandler, , P. M. Cox, , J. M. Huthnance, , J. Rougier, , and D. B. Stephenson, 2012: Quantifying future climate change. Nat. Climate Change, 2, 403409, doi:10.1038/nclimate1414.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., , D. Pearson, , B. B. Booth, , P. Friedlingstein, , C. Huntingford, , C. D. Jones, , and C. M. Luke, 2013: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341344, doi:10.1038/nature11882.

    • Search Google Scholar
    • Export Citation
  • Doughty, C. E., , and M. L. Goulden, 2008: Are tropical forests near a high temperature threshold? J. Geophys. Res. Biogeosci., 113, G00B07, doi:10.1029/2007JG000632.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and et al. , 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and et al. , 2013: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Climate, 26, 22472267, doi:10.1175/JCLI-D-12-00150.1.

    • Search Google Scholar
    • Export Citation
  • Fang, J. Y., , S. L. Piao, , Z. Y. Tang, , C. H. Peng, , and J. Wei, 2001: Interannual variability in net primary production and precipitation. Science, 293, 1723, doi:10.1126/science.293.5536.1723a.

    • Search Google Scholar
    • Export Citation
  • Feely, R. A., and et al. , 2002: Seasonal and interannual variability of CO2 in the equatorial Pacific. Deep-Sea Res. II, 49, 24432469, doi:10.1016/S0967-0645(02)00044-9.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and et al. , 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353, doi:10.1175/JCLI3800.1.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., , M. Meinshausen, , V. K. Arora, , C. D. Jones, , A. Anav, , S. K. Liddicoat, , and R. Knutti, 2014: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Climate, 27, 511526, doi:10.1175/JCLI-D-12-00579.1.

    • Search Google Scholar
    • Export Citation
  • Gu, G., , and R. F. Adler, 2011: Precipitation and temperature variations on the interannual time scale: Assessing the impact of ENSO and volcanic eruptions. J. Climate, 24, 22582270, doi:10.1175/2010JCLI3727.1.

    • Search Google Scholar
    • Export Citation
  • Guan, K. Y., , A. Wolf, , D. Medvigy, , K. K. Caylor, , M. Pan, , and E. F. Wood, 2013: Seasonal coupling of canopy structure and function in African tropical forests and its environmental controls. Ecosphere, 4, 35, doi:10.1890/ES12-00232.1.

    • Search Google Scholar
    • Export Citation
  • Guan, K. Y., and et al. , 2015: Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci., 8, 284289, doi:10.1038/ngeo2382.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., , H. Bellenger, , M. Collins, , S. Ferrett, , W. Cai, , and A. Wittenberg, 2012: A first look at ENSO in CMIP5. CLIVAR Exchanges, No. 17, International CLIVAR Project Office, Southampton, United Kingdom, 2932.

  • Gurney, K. R., , D. Baker, , P. Rayner, , and S. Denning, 2008: Interannual variations in continental-scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO2 inversions for the period 1980 to 2005. Global Biogeochem. Cycles, 22, GB3025, doi:10.1029/2007GB003082.

    • Search Google Scholar
    • Export Citation
  • Gurney, K. R., , K. Castillo, , B. Li, , and X. Zhang, 2012: A positive carbon feedback to ENSO and volcanic aerosols in the tropical terrestrial biosphere. Global Biogeochem. Cycles, 26, GB1029, doi:10.1029/2011GB004129.

    • Search Google Scholar
    • Export Citation
  • Halpert, M. S., , and C. F. Ropelewski, 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577593, doi:10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hashimoto, H., and et al. , 2004: El Niño–Southern Oscillation-induced variability in terrestrial carbon cycling. J. Geophys. Res., 109, D23110, doi:10.1029/2004JD004959.

    • Search Google Scholar
    • Export Citation
  • Hoffman, F. M., and et al. , 2014: Causes and implications of persistent atmospheric carbon dioxide biases in Earth system models. J. Geophys. Res. Biogeosci., 119, 141162, doi:10.1002/2013JG002381.

    • Search Google Scholar
    • Export Citation
  • Huete, A. R., , N. Restrepo-Coupe, , P. Ratana, , K. Didan, , S. R. Saleska, , K. Ichii, , S. Panuthai, , and M. Gamo, 2008: Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in monsoon Asia. Agric. For. Meteor., 148, 748760, doi:10.1016/j.agrformet.2008.01.012.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., , and P. M. Cox, 2005: On the significance of atmospheric CO2 growth rate anomalies in 2002–2003. Geophys. Res. Lett., 32, L14816, doi:10.1029/2005GL023027.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., , M. Collins, , P. M. Cox, , and S. A. Spall, 2001: The carbon cycle response to ENSO: A coupled climate–carbon cycle model study. J. Climate, 14, 41134129, doi:10.1175/1520-0442(2001)014<4113:TCCRTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and et al. , 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19, 39523972, doi:10.1175/JCLI3827.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., , and R. Revelle, 1985: Effects of El Niño/Southern Oscillation on the atmospheric content of carbon dioxide. Meteoritics, 20, 437450.

    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., , T. P. Whorf, , M. Wahlen, , and J. Vanderplicht, 1995: Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 375, 666670, doi:10.1038/375666a0.

    • Search Google Scholar
    • Export Citation
  • Keppel-Aleks, G., and et al. , 2014: Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2. Global Biogeochem. Cycles, 28, 12951310, doi:10.1002/2014GB004890.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090, doi:10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , B. J. Soden, , and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., and et al. , 2005: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles, 19, GB1015, doi:10.1029/2003GB002199.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , Y.-G. Ham, , J.-Y. Lee, , and F.-F. Jin, 2012: Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett., 7, 034002, doi:10.1088/1748-9326/7/3/034002.

    • Search Google Scholar
    • Export Citation
  • Lasslop, G., , K. Thonicke, , and S. Kloster, 2014: SPITFIRE within the MPI Earth system model: Model development and evaluation. J. Adv. Model. Earth Syst., 6, 740755, doi:10.1002/2013MS000284.

    • Search Google Scholar
    • Export Citation
  • Lee, K., , R. Wanninkhof, , T. Takahashi, , S. C. Doney, , and R. A. Feely, 1998: Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature, 396, 155159, doi:10.1038/24139.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and et al. , 2003: Two decades of ocean CO2 sink and variability. Tellus, 55B, 649656, doi:10.1034/j.1600-0889.2003.00043.x.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and et al. , 2009: Trends in the sources and sinks of carbon dioxide. Nat. Geosci., 2, 831836, doi:10.1038/ngeo689.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and et al. , 2015: Global carbon budget 2014. Earth Syst. Sci. Data, 7, 4785, doi:10.5194/essd-7-47-2015.

  • Li, F., , S. Levis, , and D. S. Ward, 2013: Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences, 10, 22932314, doi:10.5194/bg-10-2293-2013.

    • Search Google Scholar
    • Export Citation
  • Lloyd, J., , and J. A. Taylor, 1994: On the temperature dependence of soil respiration. Funct. Ecol., 8, 315323, doi:10.2307/2389824.

  • Malhi, Y., , and J. Wright, 2004: Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. Roy. Soc., 359B, 311329, doi:10.1098/rstb.2003.1433.

    • Search Google Scholar
    • Export Citation
  • Nagai, S., , K. Ichii, , and H. Morimoto, 2007: Interannual variations in vegetation activities and climate variability caused by ENSO in tropical rainforests. Int. J. Remote Sens., 28, 12851297, doi:10.1080/01431160600904972.

    • Search Google Scholar
    • Export Citation
  • Nemani, R. R., , C. D. Keeling, , H. Hashimoto, , W. M. Jolly, , S. C. Piper, , C. J. Tucker, , R. B. Myneni, , and S. W. Running, 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 15601563, doi:10.1126/science.1082750.

    • Search Google Scholar
    • Export Citation
  • Obata, A., , and K. Shibata, 2012: Damage of land biosphere due to intense warming by 1000-fold rapid increase in atmospheric methane: Estimation with a climate-carbon cycle model. J. Climate, 25, 85248541, doi:10.1175/JCLI-D-11-00533.1.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., , B. L. Finlayson, , and T. A. McMahon, 2007: Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, doi:10.5194/hess-11-1633-2007.

    • Search Google Scholar
    • Export Citation
  • Peylin, P., and et al. , 2005: Multiple constraints on regional CO2 flux variations over land and oceans. Global Biogeochem. Cycles, 19, GB1011, doi:10.1029/2003GB002214.

    • Search Google Scholar
    • Export Citation
  • Piao, S. L., , P. Ciais, , P. Friedlingstein, , N. de Noblet-Ducoudre, , P. Cadule, , N. Viovy, , and T. Wang, 2009: Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochem. Cycles, 23, GB4026, doi:10.1029/2008GB003339.

    • Search Google Scholar
    • Export Citation
  • Piao, S. L., and et al. , 2013: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biol., 19, 21172132, doi:10.1111/gcb.12187.

    • Search Google Scholar
    • Export Citation
  • Potter, C., , S. Klooster, , M. Steinbach, , P. Tan, , V. Kumar, , S. Shekhar, , R. Nemani, , and R. Myneni, 2003: Global teleconnections of climate to terrestrial carbon flux. J. Geophys. Res., 108, 4556, doi:10.1029/2002JD002979.

    • Search Google Scholar
    • Export Citation
  • Poulter, B., and et al. , 2014: Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509, 600603, doi:10.1038/nature13376.

    • Search Google Scholar
    • Export Citation
  • Poulter, B., and et al. , 2015: Sensitivity of global terrestrial carbon cycle dynamics to variability in satellite-observed burned area. Global Biogeochem. Cycles, 29, 207222, doi:10.1002/2013GB004655.

    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., , D. I. Kelley, , P. N. Foster, , P. Friedlingstein, , S. P. Harrison, , and P. J. Bartlein, 2011: Modeling fire and the terrestrial carbon balance. Global Biogeochem. Cycles, 25, GB3005, doi:10.1029/2010GB003906.

    • Search Google Scholar
    • Export Citation
  • Qian, H., , R. Joseph, , and N. Zeng, 2008: Response of the terrestrial carbon cycle to the El Niño–Southern Oscillation. Tellus, 60B, 537550, doi:10.1111/j.1600-0889.2008.00360.x.

    • Search Google Scholar
    • Export Citation
  • Raddatz, T. J., and et al. , 2007: Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Climate Dyn., 29, 565574, doi:10.1007/s00382-007-0247-8.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., , J. G. Canadell, , and C. Le Quéré, 2008: Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction. Biogeosciences, 5, 16011613, doi:10.5194/bg-5-1601-2008.

    • Search Google Scholar
    • Export Citation
  • Rayner, P. J., , and R. M. Law, 1999: The interannual variability of the global carbon cycle. Tellus, 51B, 210212, doi:10.1034/j.1600-0889.1999.t01-1-00007.x.

    • Search Google Scholar
    • Export Citation
  • Rayner, P. J., , R. M. Law, , and R. Dargaville, 1999: The relationship between tropical CO2 fluxes and the El Niño–Southern Oscillation. Geophys. Res. Lett., 26, 493496, doi:10.1029/1999GL900008.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., , and J. M. Wallace, 1996: Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern. Mon. Wea. Rev., 124, 20712076, doi:10.1175/1520-0493(1996)124<2071:RBNPWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rödenbeck, C., , S. Houweling, , M. Gloor, , and M. Heimann, 2003: CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys., 3, 19191964, doi:10.5194/acp-3-1919-2003.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., , M. Gloor, , N. Gruber, , C. Beaulieu, , A. R. Jacobson, , S. E. Mikaloff, , Fletcher, , S. Pacala, , and K. Rodgers, 2010: Trends and regional distributions of land and ocean carbon sinks. Biogeosciences, 7, 23512367, doi:10.5194/bg-7-2351-2010.

    • Search Google Scholar
    • Export Citation
  • Schwalm, C. R., , C. A. Williams, , K. Schaefer, , I. Baker, , G. J. Collatz, , and C. Rödenbeck, 2011: Does terrestrial drought explain global CO2 flux anomalies induced by El Niño? Biogeosciences, 8, 24932506, doi:10.5194/bg-8-2493-2011.

    • Search Google Scholar
    • Export Citation
  • Shao, P., , X. B. Zeng, , K. Sakaguchi, , R. K. Monson, , and X. D. Zeng, 2013: Terrestrial carbon cycle: Climate relations in eight CMIP5 Earth system models. J. Climate, 26, 87448764, doi:10.1175/JCLI-D-12-00831.1.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and et al. , 2008: Evaluation of the terrestrial carbon cycle, future plant geography, and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Global Change Biol., 14, 20152039, doi:10.1111/j.1365-2486.2008.01626.x.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477, doi:10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thoning, K. W., , P. P. Tans, , and W. D. Komhy, 1989: Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. J. Geophys. Res., 94, 85498565, doi:10.1029/JD094iD06p08549.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. M. Caron, , D. P. Stepaniak, , and S. Worley, 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, 4065, doi:10.1029/2000JD000298.

    • Search Google Scholar
    • Export Citation
  • Tsai, C., , S. K. Behera, , and T. Waseda, 2015: South Asia monsoon indices. Sci. Rep., 5, 8107, doi:10.1038/srep08107.

  • Van der Werf, G. R., , J. T. Randerson, , L. Giglio, , G. J. Collatz, , P. S. Kasibhatla, , and A. F. Arellano, 2006: Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys., 6, 34233441, doi:10.5194/acp-6-3423-2006.

    • Search Google Scholar
    • Export Citation
  • Van der Werf, G. R., and et al. , 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys., 10, 11 70711 735, doi:10.5194/acp-10-11707-2010.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , P. M. Rich, , and K. P. Price, 2003: Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens., 24, 23452364, doi:10.1080/01431160210154812.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , N. Zeng, , Y. Liu, , and Q. Bao, 2014: To what extent can interannual CO2 variability constrain carbon cycle sensitivity to climate change in CMIP5 Earth system models? Geophys. Res. Lett., 41, 35353544, doi:10.1002/2014GL060004.

    • Search Google Scholar
    • Export Citation
  • Wang, W. L., and et al. , 2013: Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl. Acad. Sci. USA, 110, 13 06113 066, doi:10.1073/pnas.1219683110.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and et al. , 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and et al. , 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, doi:10.5194/gmd-4-845-2011.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 2013: El Niño teleconnections in CMIP5 models. Climate Dyn., 41, 21652177, doi:10.1007/s00382-012-1537-3.

  • Wenzel, S., , P. M. Cox, , V. Eyring, , and P. Friedlingstein, 2014: Emergent constraints on climate-carbon cycle feedbacks in the CMIP5 Earth system models. J. Geophys. Res. Biogeosci., 119, 794807, doi:10.1002/2013JG002591.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P., , A. Winguth, , and E. Maier-Reimer, 2005: Sea-to-air CO2 flux from 1948 to 2003: A model study. Global Biogeochem. Cycles, 19, GB2005, doi:10.1029/2004GB002339.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., , A. Rosati, , N. C. Lau, , and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722, doi:10.1175/JCLI3631.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., , Y. G. Ham, , and J. Y. Lee, 2012: Changes in the tropical Pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J. Climate, 25, 77647771, doi:10.1175/JCLI-D-12-00304.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., , A. Mariotti, , and P. Wetzel, 2005: Terrestrial mechanisms of interannual CO2 variability. Global Biogeochem. Cycles, 19, GB1016, doi:10.1029/2004GB002273.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., and et al. , 2008: Dynamical prediction of terrestrial ecosystems and the global carbon cycle: A 25-year hindcast experiment. Global Biogeochem. Cycles, 22, GB4015, doi:10.1029/2008GB003183.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , and S. W. Running, 2010: Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940943, doi:10.1126/science.1192666.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 413 413 79
PDF Downloads 246 246 45

Increased Atmospheric CO2 Growth Rate during El Niño Driven by Reduced Terrestrial Productivity in the CMIP5 ESMs

View More View Less
  • 1 School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
  • | 2 Pacific Northwest National Laboratory, Richland, Washington
  • | 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

Better understanding of factors that control the global carbon cycle could increase confidence in climate projections. Previous studies found good correlation between the growth rate of atmospheric CO2 concentration and El Niño–Southern Oscillation (ENSO). The growth rate of atmospheric CO2 increases during El Niño but decreases during La Niña. In this study, long-term simulations of the Earth system models (ESMs) in phase 5 of the Coupled Model Intercomparison Project archive were used to examine the interannual carbon flux variability associated with ENSO. The ESMs simulate the relationship reasonably well with a delay of several months between ENSO and the changes in atmospheric CO2. The increase in atmospheric CO2 associated with El Niño is mostly caused by decreasing net primary production (NPP) in the ESMs. It is suggested that NPP anomalies over South Asia are at their maxima during boreal spring; therefore, the increase in CO2 concentration lags 4–5 months behind the peak phase of El Niño. The decrease in NPP during El Niño may be caused by decreased precipitation and increased temperature over tropical regions. Furthermore, systematic errors may exist in the ESM-simulated temperature responses to ENSO phases over tropical land areas, and these errors may lead to an overestimation of ENSO-related NPP anomalies. In contrast, carbon fluxes from heterotrophic respiration and natural fires are likely underestimated in the ESMs compared with offline model results and observational estimates, respectively. These uncertainties should be considered in long-term projections that include climate–carbon feedbacks.

Current affiliation: School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea.

Current affiliation: School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen, China.

Corresponding author address: Prof. Jong-Seong Kug, School of Environment Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea. E-mail: jskug1@gmail.com

Abstract

Better understanding of factors that control the global carbon cycle could increase confidence in climate projections. Previous studies found good correlation between the growth rate of atmospheric CO2 concentration and El Niño–Southern Oscillation (ENSO). The growth rate of atmospheric CO2 increases during El Niño but decreases during La Niña. In this study, long-term simulations of the Earth system models (ESMs) in phase 5 of the Coupled Model Intercomparison Project archive were used to examine the interannual carbon flux variability associated with ENSO. The ESMs simulate the relationship reasonably well with a delay of several months between ENSO and the changes in atmospheric CO2. The increase in atmospheric CO2 associated with El Niño is mostly caused by decreasing net primary production (NPP) in the ESMs. It is suggested that NPP anomalies over South Asia are at their maxima during boreal spring; therefore, the increase in CO2 concentration lags 4–5 months behind the peak phase of El Niño. The decrease in NPP during El Niño may be caused by decreased precipitation and increased temperature over tropical regions. Furthermore, systematic errors may exist in the ESM-simulated temperature responses to ENSO phases over tropical land areas, and these errors may lead to an overestimation of ENSO-related NPP anomalies. In contrast, carbon fluxes from heterotrophic respiration and natural fires are likely underestimated in the ESMs compared with offline model results and observational estimates, respectively. These uncertainties should be considered in long-term projections that include climate–carbon feedbacks.

Current affiliation: School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea.

Current affiliation: School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen, China.

Corresponding author address: Prof. Jong-Seong Kug, School of Environment Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea. E-mail: jskug1@gmail.com
Save