• Allen, M. R., , and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., and et al. , 2010: Observed trends in summertime precipitation over the southwestern United States. J. Climate, 23, 19371944, doi:10.1175/2009JCLI3317.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., , D. J. S. Gianotti, , and G. D. Salvucci, 2015a: Characterizing the potential predictability of station-based seasonal extremes in precipitation accumulations and dry-spell durations. J. Hydrometeor., 16, 843856, doi:10.1175/JHM-D-14-0111.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., , D. J. S. Gianotti, , and G. D. Salvucci, 2015b: Detectability of historical trends in station-based precipitation characteristics over the continental United States. J. Geophys. Res. Atmos., 120, 48424859, doi:10.1002/2014JD022960.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., , D. J. S. Gianotti, , J. Furtado, , and E. Di Lorenzo, 2016: A decadal precession of atmospheric pressures over the North Pacific. Geophys. Res. Lett., 43, 39213927, doi:10.1002/2016GL068206.

    • Search Google Scholar
    • Export Citation
  • Balling, R. C., Jr., , and G. B. Goodrich, 2011: Spatial analysis of variations in precipitation intensity in the USA. Theor. Appl. Climatol., 104, 415421, doi:10.1007/s00704-010-0353-0.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Becker, E. J., , H. van den Dool, , and M. Peña, 2013: Short-term climate extremes: Prediction skill and predictability. J. Climate, 26, 512531, doi:10.1175/JCLI-D-12-00177.1.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., , and J. E. Janowiak, 1995: Atmospheric circulation associated with the Midwest floods of 1993. Bull. Amer. Meteor. Soc., 76, 681695, doi:10.1175/1520-0477(1995)076<0681:ACAWTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. C., , and D. S. Battisti, 1999: Interannual to decadal variability in climate and the glacier mass balance in Washington, western Canada, and Alaska. J. Climate, 12, 31813196, doi:10.1175/1520-0442(1999)012<3181:ITDVIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2000: A study of atmosphere–ocean predictability on long time scales. Climate Dyn., 16, 469477, doi:10.1007/s003820050340.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2004: Long time-scale potential predictability in an ensemble of coupled climate models. Climate Dyn., 23, 2944, doi:10.1007/s00382-004-0419-8.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., , and S. J. Lambert, 2008: Multi-model decadal potential predictability of precipitation and temperature. Geophys. Res. Lett., 35, L05706, doi:10.1029/2008GL033234.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., , M. F. Cronin, , H. Freeland, , and N. Mantua, 2015: Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett., 42, 34143420, doi:10.1002/2015GL063306.

    • Search Google Scholar
    • Export Citation
  • Booth, E. L. J., , J. M. Byrne, , and D. L. Johnson, 2012: Climatic changes in western North America, 1950–2005. Int. J. Climatol., 32, 22832300, doi:10.1002/joc.3401.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., , D. A. Carpenter, , and P. J. Weser, 1990: Mechanisms of interannual variability of the southwest United States summer rainfall maximum. J. Climate, 3, 9991015, doi:10.1175/1520-0442(1990)003<0999:MOIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., , M. D. Dettinger, , H. F. Diaz, , and N. E. Graham, 1998: Decadal variability of precipitation over western North America. J. Climate, 11, 31483166, doi:10.1175/1520-0442(1998)011<3148:DVOPOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, M., 2002: Climate predictability on interannual to decadal time scales: The initial value problem. Climate Dyn., 19, 671692, doi:10.1007/s00382-002-0254-8.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633646, doi:10.1007/s00382-012-1446-5.

    • Search Google Scholar
    • Export Citation
  • De Martino, G., , N. Fontana, , G. Marini, , and V. P. Sing, 2013: Variability and trend in seasonal precipitation in the continental United States. J. Hydrol. Eng., 18, 630640, doi:10.1061/(ASCE)HE.1943-5584.0000677.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., , D. R. Cayan, , H. F. Diaz, , and D. M. Meko, 1998: North–south precipitation patterns in western North America on interannual-to-decadal timescales. J. Climate, 11, 30953111, doi:10.1175/1520-0442(1998)011<3095:NSPPIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., , and R. S. Pulwarty, 1994: An analysis of the time scales of variability in centuries-long ENSO-sensitive records in the last 1000 years. Climatic Change, 26, 317342, doi:10.1007/BF01092422.

    • Search Google Scholar
    • Export Citation
  • Eade, R., and et al. , 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett., 41, 56205628, doi:10.1002/2014GL061146.

    • Search Google Scholar
    • Export Citation
  • Eichler, T., , and W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19, 20762093, doi:10.1175/JCLI3725.1.

    • Search Google Scholar
    • Export Citation
  • Ferreira, R. N., , L. Hall, , and T. M. Rickebach, 2013: A climatology of the structure, evolution, and propagation of midlatitude cyclones in the southeast United States. J. Climate, 26, 84068421, doi:10.1175/JCLI-D-12-00657.1.

    • Search Google Scholar
    • Export Citation
  • Furtado, J. C., , E. Di Lorenzo, , B. T. Anderson, , and N. Schneider, 2012: Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies. Climate Dyn., 39, 28332846, doi:10.1007/s00382-011-1245-4.

    • Search Google Scholar
    • Export Citation
  • Gianotti, D. J., , B. T. Anderson, , and G. D. Salvucci, 2013: What do rain gauges tell us about the limits of precipitation predictability? J. Climate, 26, 56825688, doi:10.1175/JCLI-D-12-00718.1.

    • Search Google Scholar
    • Export Citation
  • Gianotti, D. J., , B. T. Anderson, , and G. D. Salvucci, 2014: The potential predictability of precipitation occurrence, intensity, and seasonal totals over the continental United States. J. Climate, 27, 69046918, doi:10.1175/JCLI-D-13-00695.1.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and et al. , 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, doi:10.1007/s00382-012-1481-2.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., , T. M. L. Wigley, , and P. D. Jones, 1993: Application of Markov models to area-average daily precipitation series and interannual variability in seasonal totals. Climate Dyn., 8, 299310, doi:10.1007/BF00209669.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., , and R. W. Knight, 2008: Prolonged dry episodes over the conterminous United States: New tendencies emerging during the last 40 years. J. Climate, 21, 18501862, doi:10.1175/2007JCLI2013.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, doi:10.1002/2015GL063083.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 2013: The potential for skill across the range of the seamless weather–climate prediction problem: A stimulus for our science. Quart. J. Roy. Meteor. Soc., 139, 573584, doi:10.1002/qj.1991.

    • Search Google Scholar
    • Export Citation
  • Hurvich, C. M., , and C.-L. Tsai, 1989: Regression and time series model selection in small samples. Biometrika, 76, 297307, doi:10.1093/biomet/76.2.297.

    • Search Google Scholar
    • Export Citation
  • Jia, L., , and T. DelSole, 2012: Multi-year predictability of temperature and precipitation in multiple climate models. Geophys. Res. Lett., 39, L17705, doi:10.1029/2012GL052778.

    • Search Google Scholar
    • Export Citation
  • Johnstone, J. A., 2011: A quasi-biennial signal in western US hydroclimate and its global teleconnections. Climate Dyn., 36, 663680, doi:10.1007/s00382-010-0755-9.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., 1977: Precipitation as a chain-dependent process. J. Appl. Meteor., 16, 671676, doi:10.1175/1520-0450(1977)016<0671:PAACDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., , and M. B. Parlange, 1998: Overdispersion phenomenon in stochastic modeling of precipitation. J. Climate, 11, 591601, doi:10.1175/1520-0442(1998)011<0591:OPISMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., , P. Pen, , and M. Chen, 2014: Is there a relationship between potential and actual skill? Mon. Wea. Rev., 142, 22202227, doi:10.1175/MWR-D-13-00287.1.

    • Search Google Scholar
    • Export Citation
  • Leith, C., 1978: Predictability of climate. Nature, 276 (Suppl.), 352355, doi:10.1038/276352a0.

  • Madden, R. A., 1976: Estimates of the natural variability of time-averaged sea-level pressure. Mon. Wea. Rev., 104, 942952, doi:10.1175/1520-0493(1976)104<0942:EOTNVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and D. J. Shea, 1978: Estimates of the natural variability of time-averaged temperatures over the United States. Mon. Wea. Rev., 106, 16951703, doi:10.1175/1520-0493(1978)106<1695:EOTNVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moron, V., , A. W. Robertson, , and M. N. Ward, 2006: Seasonal predictability and spatial coherence of rainfall characteristics in the tropical setting of Senegal. Mon. Wea. Rev., 134, 32483262, doi:10.1175/MWR3252.1.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., , M. Barlow, , and E. H. Berbery, 1999: Analysis links Pacific decadal variability to drought and streamflow in the United States. Eos, Trans. Amer. Geophys. Union, 80, 621625, doi:10.1029/99EO00412.

    • Search Google Scholar
    • Export Citation
  • Pal, I., , B. T. Anderson, , G. D. Salvucci, , and D. Gianotti, 2013: Magnitude and significance of observed trends in precipitation frequency over the U.S. 25th Conf. on Climate Variability and Change, Austin, TX, Amer. Meteor. Soc., 13B.3. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Paper215439.html.]

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and et al. , 2001: Report on the activities of the Working Group on Climate Change Detection and related rapporteurs 1998–2001. WMO Rep. WCDMP-47, WMO-TD 1071, 143 pp. [Available online at http://www.clivar.org/node/289.]

  • Pryor, S. C., , and J. T. Schoof, 2008: Changes in the seasonality of precipitation over the contiguous USA. J. Geophys. Res., 113, D21108, doi:10.1029/2008JD010251.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., , J. A. Howe, , and K. E. Kunkel, 2009: How spatially coherent and statistically robust are temporal changes in extreme precipitation in the contiguous USA? Int. J. Climatol., 29, 3145, doi:10.1002/joc.1696.

    • Search Google Scholar
    • Export Citation
  • Reek, T., , S. R. Doty, , and T. W. Owen, 1992: A deterministic approach to the validation of historical daily temperature and precipitation data from the cooperative network. Bull. Amer. Meteor. Soc., 73, 753762, doi:10.1175/1520-0477(1992)073<0753:ADATTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11, 109120, doi:10.1175/1520-0442(1998)011<0109:APSPWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and et al. , 2008: Potential predictability of long-term drought and pluvial conditions in the US Great Plains. J. Climate, 21, 802816, doi:10.1175/2007JCLI1741.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , M. Hoerling, , S. Schubert, , H. Wang, , B. Lyon, , A. Kumar, , J. Nakamura, , and N. Henderson, 2015: Causes of the 2011–14 California drought. J. Climate, 28, 69977024, doi:10.1175/JCLI-D-14-00860.1.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., , and R. A. Madden, 1990: Potential for long-range prediction of monthly mean surface temperatures over North America. J. Climate, 3, 14441451, doi:10.1175/1520-0442(1990)003<1444:PFLRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Singh, S. W., , and R. H. Kripalani, 1986: Potential predictability of lower-tropospheric monsoon circulation and rainfall over India. Mon. Wea. Rev., 114, 758763, doi:10.1175/1520-0493(1986)114<0758:PPOLTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , A. A. Scaife, , and B. P. Kirtman, 2012: What is the current state of scientific knowledge with regard to seasonal and decadal forecasting? Environ. Res. Lett., 7, 015602, doi:10.1088/1748-9326/7/1/015602.

    • Search Google Scholar
    • Export Citation
  • Steinman, B. A., , M. B. Abbott, , M. E. Mann, , N. D. Stansell, , and B. P. Finney, 2012: 1,500 year quantitative reconstruction of winter precipitation in the Pacific Northwest. Proc. Natl. Acad. Sci. USA, 109, 11 61911 623, doi:10.1073/pnas.1201083109.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., , R. L. Gall, , S. L. Mullen, , and K. W. Howard, 1995: Model climatology of the Mexican monsoon. J. Climate, 8, 17751793, doi:10.1175/1520-0442(1995)008<1775:MCOTMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S., , A. Timmermann, , Y. Chikamoto, , S. Langford, , and P. DiNezio, 2015: Stochastically generated North American megadroughts. J. Climate, 28, 18651880, doi:10.1175/JCLI-D-13-00689.1.

    • Search Google Scholar
    • Export Citation
  • Swift, L. W., , and H. T. Schreuder, 1981: Fitting daily precipitation amounts using the SB distribution. Mon. Wea. Rev., 109, 25352540, doi:10.1175/1520-0493(1981)109<2535:FDPAUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1982: Spectrum estimation and harmonic analysis. Proc. IEEE, 70, 10551096, doi:10.1109/PROC.1982.12433.

  • Tuttle, S., , and G. S. Salvucci, 2016: Empirical evidence of contrasting soil moisture–precipitation feedbacks across the United States. Science, 352, 825828, doi:10.1126/science.aaa7185.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , D. S. Battisti, , and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, doi:10.1029/2001GL013435.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , J. M. Wallace, , and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, doi:10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , B. T. Anderson, , and G. Salvucci, 2006: Stochastic modeling of daily summertime rainfall over the southwestern United States. Part I: Interannual variability. J. Hydrometeor., 7, 739754, doi:10.1175/JHM518.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , B. T. Anderson, , and G. Salvucci, 2007: Stochastic modeling of daily summertime rainfall over the southwestern United States. Part II: Intraseasonal variability. J. Hydrometeor., 8, 938951, doi:10.1175/JHM592.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., , R. R. Gillies, , J. Jin, , and L. E. Hipps, 2010: Coherence between the Great Salt Lake level and the Pacific quasi-decadal oscillation. J. Climate, 23, 21612177, doi:10.1175/2009JCLI2979.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., , R. R. Gillies, , L. E. Hipps, , and J. Jin, 2011: A transition-phase teleconnection of the Pacific quasi-decadal oscillation. Climate Dyn., 36, 681693, doi:10.1007/s00382-009-0722-5.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., , K. Hakala, , R. R. Gillies, , and W. J. Capehart, 2014: The Pacific quasi-decadal oscillation (QDO): An important precursor toward anticipating major flood events in the Missouri River basin? Geophys. Res. Lett., 41, 991997, doi:10.1002/2013GL059042.

    • Search Google Scholar
    • Export Citation
  • White, W. B., , A. Gershunov, , and J. Annis, 2008: Climatic influences on Midwest drought during the twentieth century. J. Climate, 21, 517531, doi:10.1175/2007JCLI1465.1.

    • Search Google Scholar
    • Export Citation
  • Wiles, G. C., , R. D. D’Arrigo, , and G. C. Jacoby, 1998: Gulf of Alaska atmosphere–ocean variability over recent centuries inferred from coastal tree-ring records. Climatic Change, 38, 289306, doi:10.1023/A:1005396027562.

    • Search Google Scholar
    • Export Citation
  • Wiles, G. C., , R. D. D’Arrigo, , D. Barclay, , R. S. Wilson, , S. K. Jarvis, , L. Vargo, , and D. Frank, 2014: Surface air temperature variability reconstructed with tree rings for the Gulf of Alaska over the past 1200 years. Holocene, 24, 198208, doi:10.1177/0959683613516815.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1999: Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric. For. Meteor., 93, 153169, doi:10.1016/S0168-1923(98)00125-7.

    • Search Google Scholar
    • Export Citation
  • Williams, C. N., , R. S. Vose, , D. R. Easterling, , and M. J. Menne, 2006: United States Historical Climatology Network daily temperature, precipitation, and snow data. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. [Available online at http://gcmd.nasa.gov/records/GCMD_CDIAC_NDP070.html.]

  • Wu, S.-Y., 2015: Changing characteristics of precipitation for the contiguous United States. Climatic Change, 132, 677692, doi:10.1007/s10584-015-1453-8.

    • Search Google Scholar
    • Export Citation
  • Zheng, X., , H. Nakamura, , and J. A. Renwick, 2000: Potential predictability of seasonal means based on monthly time series of meteorological variables. J. Climate, 13, 25912604, doi:10.1175/1520-0442(2000)013<2591:PPOSMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 8
PDF Downloads 35 35 7

Dominant Time Scales of Potentially Predictable Precipitation Variations across the Continental United States

View More View Less
  • 1 Department of Earth and Environment, Boston University, Boston, Massachusetts
  • | 2 School of Meteorology, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

While low-frequency variations in precipitation amount, occurrence counts (hereafter “occurrence”), and intensity can take place on seasonal to multidecadal time scales, it is often unclear at which time scales these precipitation variations can be ascribed to potentially predictable, climate-induced changes versus simple, stochastic (i.e., random) precipitation event evolutions. This paper seeks to isolate the dominant time scales at which potentially predictable changes in observed precipitation characteristics occur over the continental United States and analyze sources of revealed potentially predictable precipitation variations for particular regions. The results highlight that at interannual time scales (here defined as those shorter than 7 years), the potential for predicting annual precipitation amounts tends to be higher than for annual event occurrence or intensity, with interannual potential predictability highest in both relatively dry and wet locations and lowest in transition regions. By contrast, at time scales greater than 7 years the potential for predicting annual event occurrence tends to be higher than amount or intensity, with >20-yr time scale potential predictability highest in relatively wet locations and lowest in relatively dry locations. To highlight the utility of this type of analysis, two robust signals are selected for further investigation, including 1) approximately 10-yr time scale variations in potentially predictable annual amounts over the northwestern United States and 2) 20–60-yr time scale variations in potentially predictable annual event occurrence over the southwestern United States. While mechanistic drivers for these observed variations are still being investigated, concurrent and precursor climate-state estimates in the atmosphere and ocean—principally over the Pacific sector—are provided, the monitoring of which may help realize the potential for predicting precipitation variations in these regions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0635.s1.

Corresponding author address: Bruce T. Anderson, Earth and Environment, Boston University, 685 Commonwealth Ave., Rm. 130, Boston, MA 02215. E-mail: brucea@bu.edu

Abstract

While low-frequency variations in precipitation amount, occurrence counts (hereafter “occurrence”), and intensity can take place on seasonal to multidecadal time scales, it is often unclear at which time scales these precipitation variations can be ascribed to potentially predictable, climate-induced changes versus simple, stochastic (i.e., random) precipitation event evolutions. This paper seeks to isolate the dominant time scales at which potentially predictable changes in observed precipitation characteristics occur over the continental United States and analyze sources of revealed potentially predictable precipitation variations for particular regions. The results highlight that at interannual time scales (here defined as those shorter than 7 years), the potential for predicting annual precipitation amounts tends to be higher than for annual event occurrence or intensity, with interannual potential predictability highest in both relatively dry and wet locations and lowest in transition regions. By contrast, at time scales greater than 7 years the potential for predicting annual event occurrence tends to be higher than amount or intensity, with >20-yr time scale potential predictability highest in relatively wet locations and lowest in relatively dry locations. To highlight the utility of this type of analysis, two robust signals are selected for further investigation, including 1) approximately 10-yr time scale variations in potentially predictable annual amounts over the northwestern United States and 2) 20–60-yr time scale variations in potentially predictable annual event occurrence over the southwestern United States. While mechanistic drivers for these observed variations are still being investigated, concurrent and precursor climate-state estimates in the atmosphere and ocean—principally over the Pacific sector—are provided, the monitoring of which may help realize the potential for predicting precipitation variations in these regions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0635.s1.

Corresponding author address: Bruce T. Anderson, Earth and Environment, Boston University, 685 Commonwealth Ave., Rm. 130, Boston, MA 02215. E-mail: brucea@bu.edu

Supplementary Materials

    • Supplemental Materials (DOCX 401.95 KB)
Save