• Andrejczuk, M., , F. C. Cooper, , S. Juricke, , T. N. Palmer, , A. Weisheimer, , and L. Zanna, 2016: Oceanic stochastic parameterizations in a seasonal forecast system. Mon. Wea. Rev., 144, 18671875, doi:10.1175/MWR-D-15-0245.1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P. S., 2005a: Random-forcing model of the mesoscale oceanic eddies. J. Fluid Mech., 529, 7195, doi:10.1017/S0022112005003393.

    • Search Google Scholar
    • Export Citation
  • Berloff, P. S., 2005b: On dynamically consistent eddy fluxes. Dyn. Atmos. Oceans, 38, 123146, doi:10.1016/j.dynatmoce.2004.11.003.

  • Berloff, P. S., , W. Dewar, , S. Kravtsov, , and J. McWilliams, 2007: Ocean eddy dynamics in a coupled ocean–atmosphere model. J. Phys. Oceanogr., 37, 11031121, doi:10.1175/JPO3041.1.

    • Search Google Scholar
    • Export Citation
  • Berner, J., , T. Jung, , and T. N. Palmer, 2012: Systematic model error: The impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations. J. Climate, 25, 49464962, doi:10.1175/JCLI-D-11-00297.1.

    • Search Google Scholar
    • Export Citation
  • Berner, J., and et al. , 2017: Stochastic parameterization: Towards a new view of weather and climate models. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00268.1, in press.

    • Search Google Scholar
    • Export Citation
  • Biri, S., , M. G. Scharffenberg, , and D. Stammer, 2015: A probabilistic description of the mesoscale eddy field in the ocean. J. Geophys. Res. Oceans, 120, 47784802, doi:10.1002/2014JC010681.

    • Search Google Scholar
    • Export Citation
  • Birner, T., , and P. D. Williams, 2008: Sudden stratospheric warmings as noise-induced transitions. J. Atmos. Sci., 65, 33373343, doi:10.1175/2008JAS2770.1.

    • Search Google Scholar
    • Export Citation
  • Brankart, J.-M., 2013: Impact of uncertainties in the horizontal density gradient upon low resolution global ocean modelling. Ocean Modell., 66, 6476, doi:10.1016/j.ocemod.2013.02.004.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , M. Miller, , and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction scheme. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , P. L. Houtekamer, , Z. Toth, , G. Pellerin, , M. Z. Wei, , and Y. J. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 10761097, doi:10.1175/MWR2905.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Christensen, H. M., , I. M. Moroz, , and T. N. Palmer, 2015: Simulating weather regimes: Impact of stochastic and perturbed parameter schemes in a simple atmospheric model. Climate Dyn., 44, 21952214, doi:10.1007/s00382-014-2239-9.

    • Search Google Scholar
    • Export Citation
  • Cooper, F. C., , and L. Zanna, 2015: Optimisation of an idealised ocean model, stochastic parameterisation of sub-grid eddies. Ocean Modell., 88, 3853, doi:10.1016/j.ocemod.2014.12.014.

    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and et al. , 1998: Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dyn., 14, 385407, doi:10.1007/s003820050230.

    • Search Google Scholar
    • Export Citation
  • Dawson, A., , and T. N. Palmer, 2015: Simulating weather regimes: Impact of model resolution and stochastic parameterization. Climate Dyn., 44, 21772193, doi:10.1007/s00382-014-2238-x.

    • Search Google Scholar
    • Export Citation
  • Franzke, C. L. E., , T. J. O’Kane, , J. Berner, , P. D. Williams, , and V. Lucarini, 2015: Stochastic climate theory and modeling. Wiley Interdiscip. Rev.: Climate Change, 6, 6378, doi:10.1002/wcc.318.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., , C. Cooper, , C. A. Senior, , H. Banks, , J. M. Gregory, , T. C. Johns, , J. F. B. Mitchell, , and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre Coupled Model without flux adjustments. Climate Dyn., 16, 147168, doi:10.1007/s003820050010.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., , and F. Codron, 2011: Differing impacts of resolution changes in latitude and longitude on the midlatitudes in the LMDZ atmospheric GCM. J. Climate, 24, 58315849, doi:10.1175/2011JCLI4093.1.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, doi:10.1016/j.ocemod.2013.08.007.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I. Theory. Tellus, 28A, 473485, doi:10.1111/j.2153-3490.1976.tb00696.x.

  • Hawkins, E., , R. S. Smith, , L. C. Allison, , J. M. Gregory, , T. J. Woollings, , H. Pohlmann, , and B. de Cuevas, 2011: Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys. Res. Lett., 38, L10605, doi:10.1029/2011GL047208.

    • Search Google Scholar
    • Export Citation
  • Hovmöller, E., 1949: The trough-and-ridge diagram. Tellus, 1A, 6266, doi:10.1111/j.2153-3490.1949.tb01260.x.

  • Jansen, M. F., , and I. M. Held, 2014: Parametrizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Modell., 80, 3648, doi:10.1016/j.ocemod.2014.06.002.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , J. Gregory, , R. Thorpe, , P. Cox, , J. Murphy, , D. Sexton, , and P. Valdes, 2005: Systematic optimisation and climate simulation of FAMOUS, a fast version of HadCM3. Climate Dyn., 25, 189204, doi:10.1007/s00382-005-0027-2.

    • Search Google Scholar
    • Export Citation
  • Jung, T., , T. N. Palmer, , and G. J. Shutts, 2005: Influence of a stochastic parametrization on the frequency of occurrence of North Pacific weather regimes in the ECMWF model. Geophys. Res. Lett., 32, L23811, doi:10.1029/2005GL024248.

    • Search Google Scholar
    • Export Citation
  • Kitsios, V., , J. Frederiksen, , and M. Zidikheri, 2014: Scaling laws for parametrizations of subgrid interactions in simulations of oceanic circulations. Philos. Trans. Royal Soc. London, 372A, 20130285, doi:10.1098/rsta.2013.0285.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., , J. M. Gregory, , and L. C. Shaffrey, 2015: A process-based analysis of ocean heat uptake in an AOGCM with an eddy-permitting ocean component. Climate Dyn., 45, 32053226, doi:10.1007/s00382-015-2534-0.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , J. I. Antonov, , T. P. Boyer, , and C. Stephens, 2000: Warming of the World Ocean. Science, 287, 22252229, doi:10.1126/science.287.5461.2225.

    • Search Google Scholar
    • Export Citation
  • Li, H., , and J.-S. von Storch, 2013: On the fluctuating buoyancy fluxes simulated in a 1/10° OGCM. J. Phys. Oceanogr., 43, 12701287, doi:10.1175/JPO-D-12-080.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W.-B., , and J. D. Neelin, 2002: Considerations for stochastic convective parameterization. J. Atmos. Sci., 59, 959975, doi:10.1175/1520-0469(2002)059<0959:CFSCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2002: Stabilization of climate regimes by noise in a simple model of the thermohaline circulation. J. Phys. Oceanogr., 32, 20722085, doi:10.1175/1520-0485(2002)032<2072:SOCRBN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Open University, 2001: Ocean Circulation. 2nd ed. Oceanography Series, Vol. 3, Butterworth–Heinemann, 286 pp.

  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic–dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304, doi:10.1002/qj.49712757202.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , and P. D. Williams, 2008: Introduction. Stochastic physics and climate modelling. Philos. Trans. Royal Soc. London, 366A, 24212427, doi:10.1098/rsta.2008.0059.

    • Search Google Scholar
    • Export Citation
  • Petersen, M. R., , S. J. Williams, , M. E. Maltrud, , M. W. Hecht, , and B. Hamann, 2013: A three-dimensional eddy census of a high-resolution global ocean simulation. J. Geophys. Res. Oceans, 118, 17591774, doi:10.1002/jgrc.20155.

    • Search Google Scholar
    • Export Citation
  • Porta Mana, P., , and L. Zanna, 2014: Toward a stochastic parameterization of ocean mesoscale eddies. Ocean Modell., 79, 120, doi:10.1016/j.ocemod.2014.04.002.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and et al. , 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Schmittner, A., , and A. J. Weaver, 2001: Dependence of multiple climate states on ocean mixing parameters. Geophys. Res. Lett., 28, 10271030, doi:10.1029/2000GL012410.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., 2003: Predictability of SST in an idealized, one-dimensional, coupled atmosphere–ocean climate model with stochastic forcing and advection. J. Climate, 16, 323335, doi:10.1175/1520-0442(2003)016<0323:POSIAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L. C., and et al. , 2009: U.K. HiGEM: The new U.K. High-Resolution Global Environment Model—Model description and basic evaluation. J. Climate, 22, 18611896, doi:10.1175/2008JCLI2508.1.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., , and T. N. Palmer, 2007: Convective forcing fluctuations in a cloud-resolving model: Relevance to the stochastic parameterization problem. J. Climate, 20, 187202, doi:10.1175/JCLI3954.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. S., 2012: The FAMOUS climate model (versions XFXWB and XFHCC): Description update to version XDBUA. Geosci. Model Dev., 5, 269276, doi:10.5194/gmd-5-269-2012.

    • Search Google Scholar
    • Export Citation
  • Smith, R. S., , J. M. Gregory, , and A. Osprey, 2008: A description of the FAMOUS (version XDBUA) climate model and control run. Geosci. Model Dev., 1, 5368, doi:10.5194/gmd-1-53-2008.

    • Search Google Scholar
    • Export Citation
  • Srokosz, M. A., , and H. L. Bryden, 2015: Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science, 348, 1255575, doi:10.1126/science.1255575.

    • Search Google Scholar
    • Export Citation
  • Sura, P., , and C. Penland, 2002: Sensitivity of a double-gyre ocean model to details of stochastic forcing. Ocean Modell., 4, 327345, doi:10.1016/S1463-5003(02)00008-2.

    • Search Google Scholar
    • Export Citation
  • Treguier, A.-M., and et al. , 2014: Meridional transport of the salt in the global ocean from an eddy-resolving model. Ocean Sci., 10, 243255, doi:10.5194/os-10-243-2014.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., 2005: Modelling climate change: The role of unresolved processes. Philos. Trans. Royal Soc. London, 363A, 29312946, doi:10.1098/rsta.2005.1676.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., 2012: Climatic impacts of stochastic fluctuations in air–sea fluxes. Geophys. Res. Lett., 39, L10705, doi:10.1029/2012GL051813.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., , P. L. Read, , and T. W. N. Haine, 2003: Spontaneous generation and impact of inertia–gravity waves in a stratified, two-layer shear flow. Geophys. Res. Lett., 30, 2255, doi:10.1029/2003GL018498.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., , T. W. N. Haine, , and P. L. Read, 2004: Stochastic resonance in a nonlinear model of a rotating, stratified shear flow, with a simple stochastic inertia–gravity wave parameterization. Nonlinear Processes Geophys., 11, 127135, doi:10.5194/npg-11-127-2004.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., , E. Guilyardi, , G. Madec, , S. Gualdi, , and E. Scoccimarro, 2010: The role of mean ocean salinity in climate. Dyn. Atmos. Oceans, 49, 108123, doi:10.1016/j.dynatmoce.2009.02.001.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., , M. J. P. Cullen, , M. K. Davey, , and J. M. Huthnance, 2013: Mathematics applied to the climate system: Outstanding challenges and recent progress. Philos. Trans. Roy. Soc. London, 371A, 20120518, doi:10.1098/rsta.2012.0518.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 1999: Convergence of atmospheric simulations with increasing horizontal resolution and fixed forcing scales. Tellus, 51A, 663673, doi:10.1034/j.1600-0870.1999.00009.x.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2008: Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, version 3. Tellus, 60A, 848862, doi:10.1111/j.1600-0870.2008.00339.x.

    • Search Google Scholar
    • Export Citation
  • Zavala-Garay, J., , A. M. Moore, , C. L. Perez, , and R. Kleeman, 2003: The response of a coupled model of ENSO to observed estimates of stochastic forcing. J. Climate, 16, 28272842, doi:10.1175/1520-0442(2003)016<2827:TROACM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 76 76 14
PDF Downloads 42 42 9

Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

View More View Less
  • 1 Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 2 Risk Management Solutions, London, United Kingdom
  • | 3 National Centre for Atmospheric Science, University of Reading, Reading, and Met Office Hadley Centre, Exeter, United Kingdom
  • | 4 National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom
  • | 5 Centre for Ocean and Atmospheric Sciences, University of East Anglia, Norwich, United Kingdom
© Get Permissions
Restricted access

Abstract

In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere–ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations.

Corresponding author address: Paul D. Williams, Department of Meteorology, University of Reading, Earley Gate, Reading RG6 6BB, United Kingdom. E-mail: p.d.williams@reading.ac.uk

Abstract

In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere–ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations.

Corresponding author address: Paul D. Williams, Department of Meteorology, University of Reading, Earley Gate, Reading RG6 6BB, United Kingdom. E-mail: p.d.williams@reading.ac.uk
Save